

AddressBroker 1

AddressBroker

Reference Manual for Windows, UNIX

Version 4.10

Information in this document is subject to change without notice and does not represent a
commitment on the part of the vendor or its representatives. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, without the written permission of Precisely, 1700 District Ave Ste 300, Burlington,
MA 01803-5231.

© 1994, 2021 Precisely. All rights reserved.

Precisely is a wholly-owned subsidiary of Syncsort Incorporated. See www.precisely.com for
information about our valuable trademarks.

The following trademarks are owned by the United States Postal Service®: CASS, CASS
Certified, DPV, eLOT, FASTforward, First-Class Mail, Intelligent Mail, LACSLink, NCOALink,
PAVE, PLANET Code, Postal Service, POSTNET, Post Office, RDI, SuiteLink, United States
Postal Service, Standard Mail, United States Post Office, USPS, ZIP Code, and ZIP+4. This list is
not exhaustive of the trademarks belonging to the Postal Service.

USPS Notice: Precisely holds a nonexclusive license to publish and sell ZIP+4 databases on
optical and magnetic media. The price of the Precisely product is neither established, controlled,
nor approved by the U.S. Postal Service.

Precisely is a non-exclusive licensee of USPS® for NCOALink® processing. Prices for the
Precisely products, options and services are not established, controlled or approved by USPS®
or United States Government. When utilizing RDI™ data to determine parcel-shipping costs, the
business decision on which parcel delivery company to use is not made by the USPS® or United
States Government.

Spectrum Geocoding Datasets used within Precisely applications are protected by various
trademarks and by one or more of the following copyrights:

Copyright © United States Postal Service. All rights reserved.

© 2021 TomTom. All rights reserved. This material is proprietary and the subject of copyright
protection and other intellectual property rights owned by or licensed to TomTom or its suppliers.
The use of this material is subject to the terms of a license agreement. Any unauthorized copying
or disclosure of this material will lead to criminal and civil liabilities.

© 2021 HERE

Copyright © United States Census Bureau

© Copyright Canada Post Corporation
The delivered database contains data from a compilation in which Canada Post Corporation is the
copyright owner.

The Master Location Data (MLD) product is a produced work that referenced the Microsoft US
Building Footprints dataset. This dataset is available at https://github.com/Microsoft/
USBuildingFootprints and is licensed under the Open Database License (ODbL). The license is
available at https://opendatacommons.org/licenses/odbl/.

https://www.precisely.com/
https://github.com/Microsoft/USBuildingFootprints
https://github.com/Microsoft/USBuildingFootprints
https://github.com/Microsoft/USBuildingFootprints
https://github.com/Microsoft/USBuildingFootprints
https://opendatacommons.org/licenses/odbl/
https://opendatacommons.org/licenses/odbl/

Contents

Precisely Reference Manual for Windows 4

1 - Before You Begin 6

Purpose of this guide 7
If you need more help 7
To obtain additional user guides 7

2 - Introduction to AddressBroker 8

About AddressBroker 9
AddressBroker functionality 9
Using Master Location Data 15
Demographics Library functionality 46
Spatial+ functionality 46
Geographic Determination Library functionality
47
Geo-demographic data 48
AddressBroker components 52
Client/Server model 52
Application programming model 53
Memory management 53
Threads and multi-threading 53
Programming interfaces 54

3 - System Requirements 55

Platform support 56
Windows DLL files and UNIX libraries 56
Operating system support for AddressBroker
APIs 57

4 - Using Initialization Files 58

Guidelines for creating initialization files 59
Sample .ini file 60
Initializing AddressBroker servers using .ini files
61
Logical names 62
AddressBroker properties 62
INPUT_FIELD LIST and OUTPUT_FIELD_LIST
66

5 - Client Applications 69

Installing AddressBroker 70
Backward compatibility 70
Multi-threading support requirements 70
Input/Output address records 70
Initializing a client application 72
AddressBroker properties—client applications73
Logical names—client applications 77
Input/Output fields 79

6 - Server 81

Installing AddressBroker 82
Backward compatibility 82
Windows server administration 82
UNIX server administration 86
Using multiple servers 90

7 - Batch Application 92

Formatting your input files 93
Creating the configuration file 93
Starting the batch application 98

8 - Java API 99

Restrictions in the Java API 100
Accessing the AddressBroker Java library 100
AddressBroker Java tutorial 101
AddressBroker Java methods 109
AddressBroker Java exceptions 139

9 - .NET API 141

Accessing the AddressBroker .NET library 142
AddressBroker .NET tutorial 142
AddressBroker .NET methods 159
AddressBroker .NET exceptions 188

10 - C API 190

Accessing the AddressBroker C libraries 191
AddressBroker C tutorial 192
AddressBroker C functions 197
Errors, messages, and status logs 227

11 - C++ API 230

Accessing the AddressBroker C++ libraries231
AddressBroker C++ tutorial 232
AddressBroker C++ member functions 238
Errors, messages, and status logs 281

12 - ActiveX Interface 283

IDEs and enumerated types 284
AddressBroker properties vs. ActiveX properties
284
Accessing the AddressBroker ActiveX library284
AddressBroker ActiveX tutorial 285
AddressBroker ActiveX functions 294
AddressBroker ActiveX properties 318
Errors, messages, and status logs 338

Contents

AddressBroker Reference Manual for Windows 5

13 - Properties 339

Using Spatial Import 340
Initialization properties 341
Processing control properties 345
Read-only properties 352
Pre-defined property values 354

14 - Properties descriptions 358

Quick reference 359

15 - Fields 391

Tables of input fields 392
Tables of output fields 399

16 - Match codes 422

GeoStan return codes 423
GeoStan Canada return codes 430

17 - Location Codes 432

GeoStan location codes 433

18 - Status Codes 442

Understanding AddressBroker status codes443

A - Advanced Concepts 446

Address line input modes 447
Address preference 450

B - Early Warning System Data 455

C - USPS Link products 457

Implementing LACSLink and DPV 462
False positive report example code 462
Reporting a false positive address 468
Understanding SuiteLINK for secondary numbers
469

D - User-defined Data Files 471

User Dictionary 472
Auxiliary files 479

1 – Before You Begin

In this chapter

This chapter discusses the purpose and use of this guide, how its
conventions are presented, and how to obtain assistance from
Precisely.
Purpose of this guide 7
If you need more help 7
To obtain additional user guides 7

AddressBroker Reference Manual for Windows 7

Purpose of this guide
This guide provides information on using AddressBroker functionality including the
underlying GeoStan library, Demographics Library, and Spatial+ functionality. In addition to
reviewing the client, including related API (Java, .NET, C and C++) and server applications,
this guide also provides information regarding properties, fields, and pertinent codes
(match, location, and status).

If you need more help
If you are unable to resolve a problem, a Precisely Technical Support Representative can
help guide you to a solution. To open a Support case, go to
https://support.precisely.com/casemanagement/. When you contact Precisely Technical
Support, please have the following information ready:

• A description of the task you were performing.
• The resulting reports (specifically, the Execution Log and Parameter Record

Listing).

Reporting complete details to Technical Support will help you and the technical support
representative resolve the problem quickly .

The Website

You can also find out about Precisely software products and services on our website:
https://www.precisely.com.

To obtain additional user guides

To obtain electronic copies of our product manuals, go to :https://support.precisely.com.

https://www.precisely.com
https://www.precisely.com
https://support.precisely.com
https://support.precisely.com/casemanagement/
https://support.precisely.com/casemanagement/

2 – Introduction to
AddressBroker

In this chapter

About AddressBroker 9
AddressBroker functionality 9
Using Master Location Data 15
Demographics Library functionality 46
Spatial+ functionality 46
Geographic Determination Library functionality 47
Geo-demographic data 48
AddressBroker components 52
Client/Server model 52
Application programming model 53
Memory management 53
Threads and multi-threading 53
Programming interfaces 54

AddressBroker Reference Manual for Windows 9

About AddressBroker
Your customer database is the heart of your business. You use it to maintain the valuable
relationships you have established, to generate monthly billing statements, and to forecast
where your business is being generated and where you should focus your marketing and
sales efforts. Centrus AddressBroker can improve the way you manage your customer data
by processing it for address standardization, geocoding, demographic enhancement, and
spatial analysis. With AddressBroker, you can write an application to retrieve demographic
information from Precisely’ demographic data (.dld) files. You can also use spatial data
(polygons, lines, and points) in a proprietary and optimized (.gsb) file format. Separately
available loader programs convert other data files into the formats AddressBroker uses for
these purposes.

AddressBroker combines and extends the functionality of the Precisely core programming
libraries: GeoStan, GeoStan Canada, Demographics Library, Spatial+™, and the Centrus
Geographic Determination Library. Use AddressBroker to rapidly develop applications that
can run in client/server or Internet environments. AddressBroker provides the following
application programming interfaces (APIs) to develop your applications: C, C++, Java,
.NET, and ActiveX.

AddressBroker processes address data in programmatic and interactive applications. Use
AddressBroker for multiple record processing or to find matches for incomplete addresses.

AddressBroker “brokers” transactions between your client application and the underlying
programming libraries (GeoStan, Spatial+, Demographics, GDL, and GeoStan Canada) that
can best service the transactions. Based on the information your application requests,
AddressBroker divides up the task of providing that information among these components.
It then gathers the information that they provide and returns that information to your
application.

Brokering also lets you process multiple records with a single processing call. In
client/server and Internet environments, brokering enhances performance and reduces
network traffic. AddressBroker hides low-level network communication protocols from your
application. In client/server and Internet environments, AddressBroker supports direct
connections via TCP/IP sockets.

AddressBroker functionality
This section describes AddressBroker’s functionality in terms of its underlying products. The
specific combination of functionality and data files available to you depends on your
licensing agreement with Precisely.

AddressBroker Reference Manual for Windows 10

GeoStan functionality

To standardize addresses, Address Broker:

• Compares an input address to a database of addresses (either USPS or Canadian data,
if the address is in Canada).

• If GeoStan data is conflated, combines the USPS data with street vendor data to
standardize the address.

You can also geocode your address data. Geocoding is the process of assigning
geographic designations, such as latitude and longitude, to an address using premium
geographic vendors or Precisely Enhanced data files.

After your address database is standardized and geocoded, you can make demographic
and spatial enhancements to it through AddressBroker’s Demographics Library and
Spatial+ components. AddressBroker’s address standardization and geocoding
functionality form the foundation of address database management.

Note: AddressBroker also supports the USPS Delivery Point Validation (DPV) and the
Locatable Address Conversion System process (LACSLink). For information on
adding this functionality, contact your Precisely customer representative.

Valid addresses

AddressBroker incorporates sophisticated algorithms from GeoStan to improve match rates
for poorly formed input addresses. For the highest match rate, your address data should be
as close to USPS standards as possible. To be processed according to Postal Service
guidelines, addresses are required to have at least the following items:

• A street address that has at least a house number and a street name
• Either a city and state, or a ZIP Code.

When a match is returned, you can retrieve any elements missing from your input address.

Note: Although Postal Service guidelines require a city and state, or a ZIP Code in the input
last line, GeoStan can perform matching with a lastline that only contains the city. For
more information, see “City-only lastline matching” on page 32.

Address elements

Street address elements include: House Number, Prefix Direction, Street Name, Street
Type, Postfix Direction, Unit Type, and Unit Number. Last line address elements include
City, State, ZIP Code, and ZIP + 4. Not all addresses contain all elements. For example, the
street address:

123 Elm St.

AddressBroker Reference Manual for Windows 11

does not contain any directionals or unit information, yet it may be a valid U.S. Postal
Service street address. Street suffix and pre- and post-directional elements may not be
critical elements of some addresses. AddressBroker can parse address lines into their
component parts. It processes address lines as single elements or as collections of fields.

AddressBroker automatically processes building names, city names, and hyphenated
addresses.

Building name matching

AddressBroker standardizes building name addresses to the correct street address. For
example:

Empire State Building
New York, NY

is correctly standardized to:

Empire State Building
350 5th Ave.
New York, NY 10118-0110

City name matching

With AddressBroker, a large number of city abbreviations can be recognized and
standardized.

Centerline matching

Centerline matching is used with point-level matching to tie a point-level geocode with its
parent street segment. This functionality is useful for routing applications.

This provides you with additional data about the parent street segment that is not
retrievable using only the point-level match. When retrieving the information,
AddressBroker also supplies the bearing and distance from the point data geocode to the
centerline match.

Optionally, a centerline offset distance may be specified. The offset specifies, in feet, a
distance to move the point from the street centerline toward the parcel centroid. This is
useful in routing applications. If the specified distance places the geocode beyond the
parcel centroid, the parcel centroid is returned.

Centerline matching requires that you are licensed for point-level matching.

AddressBroker Reference Manual for Windows 12

Hyphenated address support

Address ranges are checked for missing or misplaced hyphens. Alphanumeric ranges are
checked for proper sequence.

For example, if a house number is incorrectly entered with a hyphen, the number is first
concatenated. If no match is resolved, the portion of the number following the hyphen is
tested as a unit number.

Address match methodology

AddressBroker searches all records in the locale (city) or Finance Areas for a given city. A
Finance Area is a collection of ZIP Codes within a contiguous geographic region. The result
of an address search is a set of possible matches between an input address line and the
search area.

Each possible match is assigned a score. A confidence score is assigned to each address
element. The scoring system takes into account all address anomalies such as dropped or
transposed characters, minor misspellings, and “identical” address ranges, where one
range is for a street and the other range is for a high rise. The list of possible matches is
then sorted by score. The match with the best (lowest) score is returned. A match with a
score of 0 exactly matches all scored address elements.

If the best rating is not unique, your application can supply routines to select the best
match. You can do this programmatically or interactively.

When matching addresses, select one of the following match modes:

• The “Exact” match mode requires a nearly perfect match. This provides very fast
processing. Precisely recommends using this match mode when an address list is
known to contain previously standardized addresses.

• The “Close” match mode is optimized to return as many correct addresses as possible
from a “dirty” list. Precisely recommends using this match mode for processing lists that
have not previously been standardized.

• The “Relax” match mode is the slowest to process, but attempts numerous
transpositions to create a match. It may return incorrect matches when it should return
no matches at all. Thus, Precisely recommends using this match mode only for
interactive use, when a user views each address as it is processed.

• The “Interactive” match mode is only for use with single-line address matching. It is
designed for interactive matching such as used, for example, in mobile applications, so
it permits more flexible matching patterns. It may, in some cases, return additional
possible matches than the “Relax” match mode. For more information on Interactive
mode, see “Using Interactive match mode” on page 13.

• The “CASS” match mode processes an address according to USPS CASS rules. The
purpose of this mode is to create a list of mailable addresses. This mode generates a
large number of match candidates. This mode does not perform intersection, building

AddressBroker Reference Manual for Windows 13

name, spatial alias (TIGER, HERE and TomTom street name alias), or Centrus alias
matches. It also does not match to candidates from data sources that do not have
USPS equivalent records. This mode recognizes and parses two unit numbers on the
same address line, for example a building and unit number.

• The “Custom” match mode allows applications to specify individual “must match” field
matching rules for address number, addressline, city, Zip Code, state.

Note: The CASS and Custom match modes are not supported in single-line address
matching.

See “Pre-defined property values” on page 354 for information about defined constants for
each match mode.

Note: Although AddressBroker has a CASS processing mode, AddressBroker is not CASS
certified.

Using Interactive match mode

Interactive mode is designed for interactive mobile/web applications. In this use case, it is
expected that users may enter single-line addresses that contain misspelled, inaccurate,
and/or missing information, so GeoStan processes this input utilizing a looser set of criteria
for matching than the other match modes. As a result, the matching output could include
multiple match candidates. The list of matches can be presented to the user who would
then select the desired match candidate. If an exact match is found, then that single match
candidate is returned; a mix of accurate and inaccurate results will not be presented. The
following table shows a comparison of the match results when running in interactive vs.
close or relaxed modes.

Single-line input address
Interactive mode match
candidates

Close/Relaxed mode single
match candidate

HIGHLAND VIEW WINCHESTER 01890 5 HIGHLAND VIEW AVE,
WINCHESTER, MA 01890
5 HIGHLAND TER,
WINCHESTER, MA 01890
5 HIGHLAND AVE,
WINCHESTER, MA 01890

5 HIGHLAND VIEW AVE,
WINCHESTER, MA 01890

414 PINE WILLIAMSFIELD 61489 414 N PINE ST,
WILLIMAMSFIELD, IL 61849
414 PINE ST,
WILLIAMSFIELD, IL 61489

414 N PINE ST,
WILLIMAMSFIELD, IL 61849

46 HORNBEAM ST CRANSTON RI
(conflict with street type)

46 HORNBEAM DR,
CRANSTON, RI

46 HORNBINE ST,
CRANSTON, RI

611 W 13TH JOPLIN MO 64801
(conflict between directional and ZIP Code)

611 E 13TH ST,
JOPLIN, MO 64801
611 W 13TH ST,
JOPLIN, MO 64804

611 W 13TH ST,
JOPLIN, MO 64804

AddressBroker Reference Manual for Windows 14

Capabilities and restrictions:
• Interactive match mode is only available in single-line address processing. If an attempt

is made to run a non-single-line address when the match mode is set to
AB_MODE_INTERACTIVE, the match mode is temporarily changed to AB_MODE_RELAX and the
address is processed in relaxed mode. When the matching process completes, the
match mode is automatically reverted back to AB_MODE_INTERACTIVE.

• Interactive match mode allows users to break the cardinal rule: If the user enters 123 S
Main and there is only 123 N Main, a match is made and a match code is returned that
reflects the modified directional.

• Interactive match mode handles cases where users transpose pre-directionals with
post-directionals without penalty.

• Interactive match mode ignores the PREFER_ZIP_OVER_CITY setting. When the city and
ZIP Code don't match correctly, the best geocoding result will be returned based on an
analysis of all the input address elements.

• When operating in interactive mode, in cases where a point address or interpolated
street address result cannot be determined, ZIP-9, ZIP-7 or ZIP-5 centroid(s) may be
returned.

Setting up Interactive mode

To set up Interactive mode, set MATCH_MODE to:

• For C, C++, .NET, Java APIs: AB_MODE_INTERACTIVE
• For ActiveX API: ABX_MODE_INTERACTIVE

To process a single-line address:

• Set the INPUT_MODE property to NORMAL; and
• Place the single-line address into the addressline field and leave the other address

fields empty.

Point-Level option

The Point-Level option incorporates data that locates addresses at the center of the actual
building footprint or parcel. This provides enhanced geocoding accuracy for internet
mapping, flood hazard determination, property and casualty insurance,
telecommunications, the utility industries, and others. You must use the Point-Level option
with a street network data set from an appropriate vendor; you cannot use the option as a
standalone product.

Additional Point-Level datasets may be licensed that allow you to retrieve supplemental
information about the parcel. The Centrus APN dataset allows you to retrieve the APN. The
Centrus Elevation dataset allows you to retrieve the parcel centroid elevation.

For more information on adding the Point-Level option to your AddressBroker license,
contact Precisely Sales.

AddressBroker Reference Manual for Windows 15

Using Master Location Data
Master Location Data (MLD) is a comprehensive, multi-sourced dataset that includes every
known, addressable location in the United States. Because MLD is sourced from multiple
data resources, it is a more complete universe of addresses than any single data source. A
unique identifier, PreciselyID, is assigned to each physical addressable location within
MLD, which allows users to more easily manage their address data and unlock a wealth of
information linked to it.

Having a more complete universe of addresses available for matching results in an
increase in high confidence address matches, and a decrease in false-positive matches. A
false-positive match results when an incomplete input address is compared against an
incomplete dataset, and the wrong match is returned because there is not enough
information in either the input, or the matching dataset, to know that the address has been
mismatched.

An example of this is an input address of “100 Main St”. In one matching data source there
may be only a “100 E Main St”, and in another matching data source there may only be a
“100 W Main St”, even though both “100 W Main St” and “100 E Main St” are valid. In both
cases, the “100 Main St” input address would match to the record in the matching data
source, and there would be a high level of confidence that the match was correct because it
was only compared against a single address in each data source. In both cases, it would be
a false-positive match since the input of address “100 Main St” could mean either “100 E
Main St”, or “100 W Main St”. However, in the case of MLD, since the addresses come from
multiple sources, both “100 W Main St” and “100 E Main St” would exist in the matching
data. In this case, a multiple match would be returned for the input address “100 Main St”,
rather than a false-positive match to either “100 W Main St”, or “100 E Main St”.

The premium matching confidence of MLD is further enhanced by the availability of more
high-precision geocodes for the addressable locations included in the MLD dataset. MLD
considers location information from multiple data sources to provide the highest precision
geocode available for each address. This provides an increase in high-precision geocodes
when compared with any single source.

Additional features for Master Location Data

Optional matching features:

• PreciselyID ZIP Centroid Locations
• Point of Interest matching

Optional geocoding features:

• Expanded Centroids
• Extended Attributes

Optional PreciselyID features:

AddressBroker Reference Manual for Windows 16

• PreciselyID Fallback
• Reverse PreciselyID Lookup

The PreciselyID unique identifier

The PreciselyID is a unique identifier assigned to each physical addressable location within
the Master Location Dataset. The PBKEY field is returned when a match is made to MLD. It is
a 12-character (+1 null) field that has ‘P’ as the leading character, and is a persistent
identifier for an address.

Use Cases
Some of the benefits provided by the PreciselyID include:

• Access to attribute data that provides additional information about an address such as
demographics, proximity to hazards, availability of services and other property
information.

• Improved efficiency in managing and maintaining consistent and accurate data for
customer address lists.

• The ability to generate an address list of customers targeted for products and services
based on specific attributes associated with their address.

The following sections provide more detailed information.

GeoEnrichment of Address Data

The PreciselyID unique identifier serves as a lookup key with Precisely GeoEnrichment
datasets to add attribute data for an address location. Depending on the GeoEnrichment
dataset(s) you install, the attribute data can include property ownership, real estate, census,
consumer expenditure, demographic, geographic, fire and flood protection, and/or
telecommunication and wireless systems information and more. Some of these datasets
return point location specific data, such as property ownership and real estate, whereas
others provide polygonal-based data, for example, fire and flood protection, which can
identify flood plains, wildfire or rating territories.

Address Master Data Management using Reverse PreciselyID Lookup

To ensure the latest address information and most accurate locations are being used,
businesses may regularly geocode their customer address list. There is a cost in terms of
computing power to this intensive process, as well as a small chance of changes to the
address match. Some businesses monitor these changes since it's integral to their
business. Additionally, many businesses have multiple address databases across different
business functions, and have the need for consistent representation of a single address
across multiple systems and databases. The Reverse PreciselyID Lookup feature removes
the need to re-geocode the address by using the PreciselyID unique identifier rather than

AddressBroker Reference Manual for Windows 17

the address as input. The address together with latitude/longitude coordinates are returned.
The Reverse PreciselyID Lookup process is substantially faster and therefore less costly
than using the address to retrieve this information. In addition, since a PreciselyID is
persistent, there is no chance of matching to a different address.

Identifying Addresses from GeoEnrichment Data using Reverse PreciselyID
Lookup

The GeoEnrichment Fabric products are a variety of text-based data files that contain
different attributes for each address in the Master Location Dataset. You can use the
attributes in one or more of these GeoEnrichment datasets to identify customers for
products or services based on those specific attributes. The lookup key for these products
is the PreciselyID unique identifier rather than the address. This allows you to easily link
customers across multiple datasets if you need to consider attributes included in more than
one GeoEnrichment dataset. For example, using Ground View Family Demographics
Fabric, in conjunction with Property Attribute Fabric, you would be able to generate a list of
PreciselyIDs for records that represent young families, with 4 or more persons, in large
houses, to target for specific products and services. Once records with the desired
attributes have been identified, the PreciselyIDs from those records can be used to return
the address and location information for those customers using PreciselyID Reverse
Lookup.

Optional matching features

PreciselyID ZIP Centroid Locations

The default behavior of GeoStan is to return matches from Master Location Data only for
addressable locations that have an address-level geocode. ZIP centroid returns are
optionally available when matching to Master Location Data. For addresses that don't have
a high-quality location, this provides access to the PreciselyID which can be used to unlock
additional information about an address using GeoEnrichment data, as well as to realize
operational processing efficiencies. This allows us to ensure maximum address coverage
and integrity in geocoding. The inclusion of these addresses enables us to provide a higher
match rate, lower false-positive match rate, and access to the PreciselyID for all known
addressable locations in the US.

Implementation

Server (.ini file)

If you are using a Server initialization (.ini) file, make sure you define:

• GEOSTAN_PATHS - the data paths to the DVDMLD and DVDMLD2 folders, as well as any
other datasets you have installed for your application.

• LICENSE_PATH - the paths to the licenses for the datasets defined in GEOSTAN_PATHS.

AddressBroker Reference Manual for Windows 18

• LICENSE_KEY - the password for the associated license.

Batch application

To enable PreciselyID ZIP Centroid Locations in your batch application:

• In the abbatch.ini configuration file:
– ZIP_PBKEYS=TRUE

Client application

To enable PreciselyID ZIP Centroid Locations in your client application, use the appropriate
SetProperty method based on your language:

• Java:
– ab.setProperty("ZIP_PBKEYS", “True”);

• .NET:
– ab.setProperty("ZIP_PBKEYS", "True");

• ActiveX:
– ab.SetPropertyXBool("ZIP_PBKEYS", true)

• C:
– QABSetPropertyStr(broker, "ZIP_PBKEYS", "True");

• C++:
– broker->SetProperty("ZIP_PBKEYS", "True");

Point of Interest matching

The optional Point Of Interest (POI) Index file (poi.gsi) included with Master Location Data
provides expanded support in alias name matching. For more information, see “Using
building name, firm and Point of Interest matching” on page 28 and “Using the optional POI
Index file” on page 29.

Optional geocoding features

Expanded Centroids

In some cases, more than one point-level geocode is available for an address matched in
Master Location Data (MLD) (for more information on the different types of point-level
geocodes, see the "APnn" definitions in Address location codes). Expanded Centroids are
available automatically with MLD and the presence of an optional dataset us_cents.gsc. If
an address match is found in MLD, and the optional dataset us_cents.gsc is loaded,
AddressBroker will search the optional us_cents.gsc for additional geocodes for the
matched address. When more than one point-level geocode is available from MLD data,

AddressBroker Reference Manual for Windows 19

only the highest quality geocode available (based on license) is returned with the matched
address returns using ProcessRecords. The returned location code for an Expanded
Centroids match will have an "APnn" value with a data type of "MASTER LOCATION”.

Extended Attributes

The MLD Extended Attributes dataset used in conjunction with MLD returns the Assessor’s
Parcel Number (APN) and elevation data for the matched address, as well as additional
extended attributes when available. A complete listing of available fields can be found in
“GeoStan output fields” on page 400.

Requirements

The following is required to return data from the MLD Extended Attributes data set:

• Master Location Dataset (.gsd and .gsi files).
• Streets data set.
• MLD Extended Attributes data set (extatt*p.dld files).
• It is recommended that the vintages of the MLD and MLD Extended Attributes data

sets be within 4 months of each other.

Implementation

Server (.ini file)

If you are using a Server initialization (.ini) file, make sure you define:

• GEOSTAN_PATHS - the data paths to the DVDMLD and DVDMLD2 folders and the folder
where you installed the MLD Extended Attributes dataset, as well as any other datasets
you have installed for your application.

• LICENSE_PATH - the paths to the licenses for the data sets defined in GEOSTAN_PATHS.
• LICENSE_KEY - the password for the associated license.

Batch application

• APN and elevation returns, as well as additional extended attributes when available,
from MLD Extended Attributes is supported using any INPUT_MODE value, except for
REVERSE_APN. Reverse APN matching is only available with Centrus Points and Centrus
APN data; it is not supported using MLD and MLD Extended Attributes data.

• To return APN and elevation data, include ApnID and ParcelCentroidElevation
(elevation of the parcel centroid is returned in feet; the return of the elevation in meters
is not supported) in the Outfield Field Layout definition.

Client application

The client application should set the following properties:

AddressBroker Reference Manual for Windows 20

• GEOSTAN_PATHS - the data paths to the DVDMLD and DVDMLD2 folders and the folder
where you installed the MLD Extended Attributes dataset, as well as any other datasets
you have installed for your application.

• LICENSE_PATH - the paths to the licenses for the datasets defined in GEOSTAN_PATHS.
• LICENSE_KEY - the password for the associated license.
• Output_Field_List - define your desired output fields using this property. To return APN

and elevation data, include ApnID and ParcelCentroidElevation (elevation of the parcel
centroid is returned in feet; the return of the elevation in meters is not supported).

Optional PreciselyID features

PreciselyID Fallback

When using PreciselyID Fallback, if an address match is not made to Master Location Data,
but a match is made to a different dataset, the PreciselyID unique identifier of the nearest
MLD point located within the search distance is returned. To distinguish when a fallback
PreciselyID is returned, the PBKEY return value contains a leading character of "X" rather
than "P", for example: X00001XSF1IF. Note, all of the other fields returned for the address
match, including the geocode and all associated data returns from AddressBroker, reflect
the match results for the input address. The fallback PreciselyID can then be used for the
lookup to the GeoEnrichment dataset(s), and the attribute data for the fallback location is
returned for the match.

The relevance and accuracy of the returned attribute data using a PreciselyID Fallback
location is highly dependent on the type of GeoEnrichment data, as well as the PreciselyID
Fallback search distance. PreciselyID Fallback is intended for use with GeoEnrichment
datasets that have polygonal-based data, rather than point-specific data. For example, the
PreciselyID Fallback option may be suitable for determining the FEMA flood zone for a
given location using the Flood Risk Pro GeoEnrichment dataset since it contains data that
represents a polygonal region rather than a single coordinate. However, it is important to
note that the accuracy of the returned data would very much depend on the size and nature
of the individual polygonal features described in the GeoEnrichment data, combined with
the search distance used to locate the nearest Master Location Data point. The search
distance is configurable with an allowable search radius of 0-5280 feet and a default value
of 150 feet.

Requirement

PreciselyID Fallback requires that you have licensed and installed Master Location Data.

Implementation

Note: PreciselyID Fallback can only be used in forward and reverse geocoding.

PreciselyID Fallback is disabled by default; the following steps describe how to enable this
feature:

AddressBroker Reference Manual for Windows 21

1. Enable the Approximate PBKey find property.

2. Optional. Set the search distance. Valid values = 0-5280 feet. Default = 150 feet.

Batch application

Your AddressBroker batch application should include:

• In the abbatch.ini configuration file:
– Define an output field for PBKEY in the Output Field Layout section.
– APPROX_PBKEY=TRUE.

• Optionally, in the server.ini file:
– Set the reverse geocoding search distance, “RevGeoSearchDistance”.

Client application

In all api’s, include the PBKEY output field in the OUTPUT_FIELD_LIST.

To enable PreciselyID Fallback from the client, use the appropriate SetProperty method
based on your language. The following methods use the property string names:

• Java:
– ab.setProperty(“ApproxPbKey”, “True”);

– optional: ab.setProperty(“RevGeoSearchDistance“, value);
• .NET:

– ab.setProperty(“ApproxPbKey”, "True");

– optional: ab.setProperty(“RevGeoSearchDistance“, value);
• ActiveX:

– ab.SetPropertyXBool("ApproxPbKey", true)

– optional: ab.SetPropertyXLong("RevGeoSearchDistance", value)
• C:

– QABSetPropertyStr(broker, "ApproxPbKey", "True");

– optional: QABSetPropertyStr(broker, “RevGeoSearchDistance“, value);
• C++:

– broker->SetProperty("ApproxPbKey", "True");

– optional: broker->SetProperty(“RevGeoSearchDistance“, value);

Reverse PreciselyID Lookup

Reverse PreciselyID Lookup is an optional licensed matching feature. This features uses a
PreciselyID unique identifier as input and returns all standard returns that are provided as
part of address matching.

Licensing

AddressBroker Reference Manual for Windows 22

Reverse PreciselyID Lookup requires a special license. There are two levels of licensing for
Reverse PreciselyID Lookup:

• Standard - This license allows Reverse PreciselyID Lookup of all of the standard MLD
addresses.

• Enhanced - This license allows Reverse PreciselyID Lookup of a portion of MLD
addresses that require an additional royalty due to address sourcing constraints.

Requirements

The Reverse PreciselyID Lookup feature includes the following requirements:

• You have licensed and installed the Master Location Dataset (MLD).
• You have licensed and installed the DVDMLDR dataset.
• The MLD and DVDMLDR datasets must be the same vintage.

Implementation

The following sections describe how to implement the Reverse PreciselyID Lookup feature
in your AddressBroker application.

Server (.ini file)

If you are using a Server initialization (.ini) file, make sure you define:

• GEOSTAN_PATHS - the data paths to the DVDMLD, DVDMLD2 and DVDMLDR folders, as
well as any other datasets you have installed for your application.

• LICENSE_PATH - the paths to the licenses for the datasets defined in GEOSTAN_PATHS.
• LICENSE_KEY - the password for the associated license.

Batch application

Your AddressBroker batch application should include:

• In your Input record - include PBKEY input fields (see “GeoStan input fields” on
page 393).

• In your Configuration file - include INPUT_MODE=REVERSE_PBKEY (see “Configuration
parameters” on page 94).

Client application

The client application should set the following properties:

• GEOSTAN_PATHS - the data paths to DVDMLD, DVDMLD2 and DVDMLDR, as well as any
other datasets you have installed for your application.

• LICENSE_PATH - the paths to the licenses for the datasets defined in GEOSTAN_PATHS.
• LICENSE_KEY - the password for the associated license.

AddressBroker Reference Manual for Windows 23

• Input_Mode - set this control property to one of the supported Reverse PreciselyID
Lookup input modes, either:
– AB_INPUT_NORMAL or ABX_INPUT_NORMAL (ActiveX),
– AB_INPUT_PARSED or ABX_INPUT_PARSED (ActiveX), or
– AB_INPUT_PARSED_LASTLINE or ABX_INPUT_PARSED_LASTLINE (ActiveX).

• Input_Field_List - set this property to PBKEY.
• Output_Field_List - define your desired output fields using this property, which can

include the address and the standard set of return fields for a match.

Reverse PreciselyID Lookup Search Results

When using Reverse PreciselyID Lookup, the search results can return zero to many MLD
point address variations that match the input PreciselyID. There will be no matches
returned if the given PreciselyID is not found. While many PreciselyIDs map to a single
point-level address, some PreciselyIDs map to multiple point address variations. Getting
multiple point address variations from one PreciselyID can occur in two circumstances:

1. Alias matches. Some streets are known by their common name and one to many
aliases. In this case, MLD may contain all variations of street names. An example of
multiple alias match returns for an input PreciselyID (P00008BCG8WM) is shown
below:

• AP02. Normal match (non-alias). 1206 W 600 S, FOUNTAINTOWN, IN 46130-9409

• AP02. Alias match. 1206 W 1200 N, FOUNTAINTOWN, IN 46130-9409

• AP02. Alias match. 1206 W COUNTY ROAD 1200 N, FOUNTAINTOWN, IN 46130-9409

• AP02. Alias match. 1206 W COUNTY ROAD 600 S, FOUNTAINTOWN, IN 46130-9409

2. Multi-unit buildings with/without units. In some cases, there are multi-unit
addresses without individual unit address records. In this case, you may see multiple
address records returned for the same input PreciselyID, some without unit
designations and others with ranged unit designations. In the case of multi-unit
addresses that have individual suite/unit number address designations, each will have
their own distinct PreciselyID. The following example shows address results for a
PreciselyID that maps to a building with and without units, which share the same
PreciselyID/location (P00003PZZOIE):

• AP02. Normal match (non-alias). 4750 WALNUT ST, BOULDER, CO 80301-2532

• AP02. Normal match (non-alias). 4750 WALNUT ST STE 100-103, BOULDER, CO
80301-2532

• AP02. Normal match (non-alias). 4750 WALNUT ST STE 205-205, BOULDER, CO
80301-2532

• AP02. Normal match (non-alias). 4750 WALNUT ST, BOULDER, CO 80301-2538

AddressBroker Reference Manual for Windows 24

Reverse PreciselyID Lookup Match Codes

The following table lists the match codes returned with Reverse PreciselyID Lookup.

DPV option

Delivery Point Validation (DPV) is a United States Postal Service technology that validates
the accuracy of address information down to the physical delivery point. DPV is only
available through a CASS-certified vendor, such as Precisely, and is an optional feature.

Previous address-matching software could only validate that an address fell within the low-
to-high address range for the named street. By incorporating the DPV technology, you can
resolve multiple matches and determine if the actual address exists. Using DPV reduces
undeliverable-as-addressed (UAA) mail that results from inaccurate addresses, reducing
postage costs and other business costs associated with inaccurate address information.

DPV also provides unique address attributes to help produce more accurate mailing lists.
For example, DPV provides information on if a location is vacant, and can identify
commercial mail receiving agencies (CMRAs) and private mail boxes.

See Appendix C: USPS Link products for more information on DPV. For more information
on adding DPV processing to your AddressBroker license, contact Precisely Sales.

License
Input
PreciselyID Point Results

getFields()
Match Code

Enhanced Found One Enhanced V000

Enhanced Found Multiple Standard and/or
Enhanced

V001

Enhanced Not Found None E040

Standard Found One Standard V000

Standard Found Multiple Standard V001

Standard Found One Standard, some Enhanced V002

Standard Found Multiple Standard, some
Enhanced

V003

Standard Found All Enhanced E041

Standard Not Found None E040

No license N/A N/A E000

AddressBroker Reference Manual for Windows 25

LACSLink option

The Locatable Address Conversion System (LACS) converts rural addresses to city-style
addressees. LACSLink is a USPS technology that provides mailers with an automated
process to correct addresses in areas that have undergone LACS processing. Address
conversions occur when the LACS process modifies, changes, or replaces an address. This
usually occurs due to one of the following: the conversion of rural routes and box numbers
to city-style addresses, the renaming or renumbering of existing city-style addresses to
avoid duplication, or the establishment of new delivery addresses.

See Appendix C: USPS Link products for more information on LACSLink. For more
information on adding LACSLink processing to your AddressBroker license, contact
Precisely Sales.

Understanding SuiteLink

The purpose of SuiteLink™ is to improve business addressing by adding known secondary
(suite) numbers to allow delivery sequencing where it would otherwise not be possible.
SuiteLink uses the input business name, street number location, and 9 digit ZIP+4 to return
a unit type (i.e. "STE") and unit number for that business.

As an example, when entering the following address with SuiteLink enabled in CASS mode.

UT Animal Research
910 Madison Ave
Memphis TN 38103

AddressBroker returns the following:

UT Animal Research
910 Madison Ave STE 823
Memphis TN 38103

Or

UT Animal Research
910 Madison Ave #823
Memphis TN 38103

If you have licensed the SuiteLink processing option, you must install the SuiteLink data and set
the SuiteLink initialization properties for AddressBroker to process your address through
SuiteLink. For more information on SuiteLink, see Appendix C: USPS Link products.

AddressBroker Reference Manual for Windows 26

Reverse geocoding option

Reverse geocoding is an optional processing feature that provides you with a way to enter a
point consisting of a longitude and latitude (geocode) and receive information about that
point.

To use the reverse geocoding option, you need additional data files, called GSX files. There
is an option to install these files when you install the standard AddressBroker data. By
default, AddressBroker installs these files in the GSX directory. You must specify this
directory when initializing AddressBroker.

Note: Reverse geocoding is currently not available for Guam.

Using reverse geocoding to points matching

The reverse geocoding to points matching feature provides the option to match to the
nearest point address within the search radius, rather than to the closest feature (e.g. street
segment or intersection as well as point addresses).

Note: This feature requires that at least one points data set and one streets data set are
loaded; otherwise, the match will be made to the closest feature.

By setting the value of AB_CLOSEST_POINT, you can specify whether AddressBroker
searches for the following:

• TRUE = Matches to the closest point address within the search radius.
• FALSE = default. Matches to the closest feature including street segments and

intersections in addition to address points.

Reverse APN option

Reverse APN lookup is an optional processing feature that provides you with a way to enter
FIPS and APN codes to receive information on the corresponding parcel. To use the
reverse APN lookup functionality, you need the Centrus APN dataset.

To make a match, AddressBroker must exactly match against the input APN ID, state FIPS
code, and county FIPS code.

Match location (geocodes)

You can enhance address information with a match location (geocode). Geocodes are
expressed in latitude and longitude. A geocode is determined by the street segments
available in a street database. Street coordinates are calculated to millionths of a degree,
enabling you to clearly display a match location point on top of a base map derived from the
same street network.

AddressBroker Reference Manual for Windows 27

A house number’s range is calculated and mapped onto the appropriate street segment.
AddressBroker correctly handles street segment shape points when assigning the match
location.1 An offset distance may be used. Offsets are calculated perpendicular to the street
segment range associated with an input address. This approach yields the best visual
representation for mapping packages and gives the most accurate location possible from
the geographic data.

Census Block data can also be generated for the match location.

Street intersections can be geocoded but do not return USPS information, such as ZIP
Codes, as they are not valid addresses for postal delivery.

Street locator geocoding

Street locator geocoding is an optional feature. When this feature is enabled, if a street
name is encountered while geocoding, and there is no matching address range,
AddressBroker will attempt to locate the street within the input ZIP Code or city if there is no
input ZIP Code. If AddressBroker is able to locate the street, it will return a geocode along
the matched street segment rather than the geocode for the entered ZIP Code or ZIP + 4.

If a street number is entered, AddressBroker will return the coordinates of the end point of
the closest numeric street segment within the input ZIP Code. When there is no input ZIP
Code, the closest numeric street segment of all the ZIP Codes within the input city will be
returned.

If no street number is entered, the centroid of a matching street segment within the input
ZIP Code will be returned. The centroid of a street segment for all the ZIP Codes within the
input city will be returned when there is no input ZIP Code.

When using street locator geocoding, it is likely that a match code of either E029 (no
matching range, single street segment found), or E030 (no matching range, multiple street
segment) returns. For example, if you enter Main St and there are both an E Main St and a
W Main St within the input ZIP Code then an E030 returns and the location code returned is
reflective of the input ZIP Code. The location code returned begins with a 'C' when matched
to a single street segment, indicated by E029. For more information regarding the match
and location codes associated with this feature, see “Status Codes” on page 442 and
“Geographic centroid location codes” on page 440.

Note: This option is not available in CASS mode.

1. Street segments are described by shape points. A straight segment has a point at each end. A street segment with
one or more curves is described by multiple shape points defining the curve(s).

AddressBroker Reference Manual for Windows 28

Using building name, firm and Point of Interest matching

AddressBroker can enhance standard address matching by matching to building and
business names.

By default, AddressBroker is able to match building names with unit numbers in the address
line, the Chrysler building as an example:

Firm:
Address: 5001 Chrysler Bldg
Last Line: New York New York 10174

The returned information is the address of the Chrysler building. AddressBroker returns a
standardized address in place of the building name:

Firm:
Address: 405 Lexington Ave RM 5001
Last Line: New York, NY 10174-5002

Entering the White House, as an example, into the address line, the address for the White
House returns in the address field:

Firm:
Address: White House
Last Line: Washington DC 20500

AddressBroker returns the following address:

Firm:
Address: 1600 Pennsylvania Ave NW
Last Line: Washington DC 20500-0004

The ability to search by building name entered in the address line is controlled by modifying
“BUILDING_SEARCH”.

Entering a firm name in the Firm name field returns the address for the input firm in the
address field:

Firm: White House
Address:
Last Line: Washington DC 20500

AddressBroker returns the following address:

Firm: White House
Address: 1600 Pennsylvania Ave NW
Last Line: Washington DC 20500-0004

AddressBroker Reference Manual for Windows 29

AddressBroker attempts to match a firm name entered in the input firm name field to a firm
name in the data files. The firm name field must contain only the firm name. This is an
optional search that will occur after all other address searching has failed to find a match.

By setting the value of "ALTERNATE_LOOKUP", you can specify whether AddressBroker
searches for the following:

• 1 = Matches to the address line, if a match is not made, then GeoStan matches to
the Firm name line.

• 2 = Matches to the Firm name line, if a match is not made, then GeoStan matches to
address line.

• 3 = (Default) Matches to the address line.

To enable firm name matching in the AddressBroker server, modify the abserver.ini file to
include the ALTERNATE_LOOKUP property. For example:

ALTERNATE_LOOKUP = 1

To activate Alternate Lookup from the client, use the appropriate SetProperty method
based on your language:

• Java - The Java client API uses a “setter” to enable Firm Name Matching:
– ab.setProperty(“ALTERNATE LOOKUP”, “1”);

• .NET - The .NET client API uses a “setter” to enable Firm Name Matching:
– ab.setProperty(“ALTERNATE LOOKUP” , “1”);

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:
– QABSetPropertyStr(broker, "ALTERNATE LOOKUP", "1");

• C++ - broker->SetProperty("ALTERNATE LOOKUP", "1");

Note: Neither building nor firm name searches are available when processing in CASS
mode.

Using the optional POI Index file

The optional Point Of Interest (POI) Index file (poi.gsi) included with the Master Location
Data and HERE Point Addresses datasets provides expanded support in alias name
matching.

To enable matching to the POI Index file:

1. Define the data paths, license paths and license keys to the MLD or HERE Points
datasets, as well as any other datasets you have installed for your application.

2. Set the “BUILDING_SEARCH” property to true. The POI Index file will automatically be
searched when the BUILD_SEARCH option is enabled and a firm, building or POI name is
specified in the address line.

AddressBroker Reference Manual for Windows 30

3. Process the match. If an alias match is made to the POI Index file, the IsAlias output
field returns "A11".

Using correct last line

“CORRECT_LAST_LINE”, when set to True, corrects elements of the output last line,
providing a good ZIP Code or close match on the soundex even if the address would not
match or was non-existent.

The feature works when “CENTROID_PREFERENCE” is True and the address does not
match a candidate or when AB_CENTROID_NO_ADDRESS, on page 355, is True and only last
line information is input.

For example when CENTROID_PREFERENCE = True

Address: 0 MAIN
LastLine: BOLDER CA 80301

Returns:

MATCH_CODE=E622
LASTLINE=BOULDER, CO 80301
CITY=BOULDER
STATE=CO
ZIP=80301

For example, AB_CENTROID_NO_ADDRESS = True

Address:
LastLine: BOLDER CA 80301

Returns:

MATCH_CODE=Z6
LASTLINE=BOULDER, CO 80301
CITY=BOULDER
STATE=CO
ZIP=80301

The following elements are corrected:

• City correction - The city correction is based on input ZIP unless a match to city and
state exists in which case both search areas are retained. The state input must be
correct or spelled out correctly when no ZIP is input, location code, and coordinates
based on input ZIP.

AddressBroker Reference Manual for Windows 31

– Input city is incorrect:

HAUDENVILLE MA 01039

Returns LASTLINE=HAYDENVILLE, MA 01039
LAT= 42396500 LON= -72689100

• State correction - State is abbreviated when spelled out correctly or corrected when a
zip is present. There are some variations of state input which are recognized, ILL, ILLI,
CAL, but not MASS. GeoStan does not consideration the abbreviation of the variation a
change so ILL to IL is not identified as a change in the match code. In addition the
output of the ZIP for a single ZIP city is not considered a change.
– Input city exists:

Bronx NT, 10451
Returns LASTLINE= BRONX, NY 10451

Bronx NT
Returns LASTLINE= BRONX NT
No ZIP Code for correction

– Input city does not exist - preferred city for ZIP Code returned:

60515
Returns LASTLINE=DOWNERS GROVE, IL 60515
MATCH_CODE=E622

ILLINOIS 60515 (or ILL 60515 or IL 60515 or ILLI 60515)
Returns LASTLINE=DOWNERS GROVE, IL 60515
MATCH_CODE=E222

• ZIP correction - ZIP is corrected only when a valid city/state is identified and has only
one ZIP.
– Exists on input:

HAUDENVILLE MA 01039
Returns LASTLINE=HAYDENVILLE, MA 01039

– Incorrect on input - ZIP Code correction is not performed, both search areas are
retained:

HAUDENVILLE MA 01030
Returns LASTLINE=HAYDENVILLE, MA 01030
City and ZIP do not correspond

– Does not exist on input:

DOWNRS GROVE, IL
Returns LASTLINE=DOWNERS GROVE, IL
City with multiple ZIP Codes

LILSE IL
Returns LASTLINE=LISLE, IL 60532
City with a single ZIP Code

AddressBroker Reference Manual for Windows 32

DOWNERS GROVE LL
Returns LASTLINE=DOWNERS GROVE LL,
No ZIP Code for correction

DOWNRS GROVE, LL
Returns LASTLINE=DOWNRS GROVE, LL
No ZIP Code for correction

LILSE ILLINOIS
Returns LASTLINE= LISLE, IL 60532
Correct spelled out state

LISLE ILLINOS
Returns LASTLINE= LISLE ILLINOS
Incorrect spelled out state, no ZIP Code for correction

To enable firm name matching in the AddressBroker server, modify the abserver.ini file to
include the CORRECT_LAST_LINE property. For example:
CORRECT_LAST_LINE = True

Options are True or False. The default value for CORRECT_LAST_LINE is False.

To activate Correct Last Line from the client, use the appropriate SetProperty method
based on your language:

• Java - The Java client API uses a “setter” to enable Correct Last Line:
– ab.setProperty(“CORRECT LAST LINE”, “True”);

• .NET - The .NET client API uses a “setter” to enable Correct Last Line:
– ab.setProperty(“CORRECT LAST LINE” , “True”);

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:
– QABSetPropertyStr(broker, CORRECT LAST LINE” , “True”);

• C++ - broker->SetProperty(“CORRECT LAST LINE” , “True”);

Note: For information on returned match codes see Correct last line match codes.

City-only lastline matching

City-only lastline matching permits address matching with only a city in the input lastline.
The input address should be provided using Normal or Parsed lastline rather than Multiline
input fields. With city-only lastline input, AddressBroker will search all of the states in which
the input city exists. Therefore, there is the possibility of an increase in multi-matches (E023
and E030) when matching with city-only input instead of city+state lastline input.

AddressBroker Reference Manual for Windows 33

Restrictions:
• City-only lastline input matching is not supported in CASS mode.
• City-only lastline is not supported when matching to User Dictionaries.
• When matching using city-only lastline, the PREFER_ZIP_OVER_CITY setting is ignored.
• It is strongly recommended to not use city-only lastline matching in Relaxed match

mode to avoid the return of false-positive matches.

Using predictive lastline

Predictive lastline allows you to match an address when only an input street address and
latitude/longitude coordinates are provided, rather than the traditional street address with
lastline input. For example, an input of 4750 Walnut with latitude/longitude coordinates
located in Boulder, will return full address information.

Additional feature information:
• Predictive lastline uses the search radius designated for reverse geocoding.
• If the input lat/lon falls near the borders of multiple cities, GeoStan processes all cities

and returns the results of the best match. If the results are determined as equal, then a
multi-match is returned.

• This feature does not require a license for reverse geocoding.
• This feature will work with any type of data set.

Preferring a ZIP Code over a city

The “PREFER_ZIP_OVER_CITY” property allows a user to prefer candidates that match to
input ZIP over candidates that match to input city. GeoStan creates multiple search areas
when input city and ZIP do not correspond and this feature helps establish how the
candidates should be scored.

Note: GeoStan ignores the ZIP over city preference if processing in Interactive and CASS
modes.

When there is more than one candidate in the input ZIP, some attempt is made to alleviate
a multiple match, or, where all the candidates get the same last line score. If a candidate
also matches the city and/or preferred city, that candidate gets a better score. Matching to
just preferred city is a lesser score than matching both.

Input Address: 24 GLEN HAVEN RD
Input Last Line: NEW HAVEN CT 06513

Found:
24 GLEN HAVEN RD
NEW HAVEN, CT 06513-1105

Possible candidates:

AddressBroker Reference Manual for Windows 34

 score pref.last line city

2 98 GLEN HAVEN RD 06513-1105 S 0.8100000 NEW HAVEN * best match
24 98 GLEN HAVEN RD 06513-1248 S 2.2500000 EAST HAVEN
16 66 GLEN RD 06511-2825 S 46.3925000 NEW HAVEN
2 86 GLEN PKWY 06517-1415 S 52.1525000 HAMDEN
2 28 GLEN RD 06516-6509 S 52.1525000 WEST HAVEN
2 98 GLENHAM RD 06518-2517 S 75.0100000 HAMDEN
2 72 GLEN VIEW TER 06515-1519 S 97.0900000 NEW HAVEN

When there is more than one candidate, candidates matching the input ZIP score better.

Input Address: 301 BRYANT ST
Input Last Line: SAN FRANCISCO CA 94301

Found:
301 BRYANT ST
PALO ALTO, CA 94301-1408

Possible candidates:

score pref.last line city

301 301 BRYANT ST 94301-1408 S 3.2400000 PALO ALTO * ZIP preferred match
301 305 BRYANT CT 94301-1401 S 28.2400000 PALO ALTO
300 306 BRYANT CT 94301-00ND T 35.6600000 PALO ALTO
301 301 BRYANT ST 94107-4167 H 39.6900000 SAN FRANCISCO * default match
301 319 BRYANT ST 94107-1406 S 39.6900000 SAN FRANCISCO

When there is more than one candidate, candidates that match the ZIP search area score
better. The ZIP search area is the finance area for the input ZIP.

This example with match mode set to Relax or Cass. With match mode set to Exact or
Close the match is made to EAST AURORA 14052 as there is no candidate in 14166 the
input ZIP.

Input Address: 100 MAIN ST
Input Last Line: EAST AURORA NY 14166

Found:
100 MAIN ST
DUNKIRK, NY 14048-1844

Possible candidates:

score pref.last line city

100 198 MAIN ST 14048-1844 S 3.2400000 DUNKIRK * same finance as input
ZIP 14166
100 168 MAIN ST 14052-1633 S 39.6900000 EAST AURORA

This example with the match mode set to Exact or Close.

AddressBroker Reference Manual for Windows 35

Input Address: 4200 arapahoe
Input Last Line: denver co 80301

Found:
4200 ARAPAHOE AVE
BOULDER, CO 80303-1164

Possible candidates:

score pref.last line city

4200 4210 ARAPAHOE AVE 80303-1164 S 38.7400000 BOULDER *same city as
input zip 80301
4200 4210 ARAPAHOE RD 80303-1164 S 40.7000000 BOULDER (A06)
4200 4298 E ARAPAHOE PL 80122-00ND T 62.0900000 LITTLETON
4200 4498 E ARAPAHOE RD 80122-00ND T 62.0900000 LITTLETON
4181 4499 E ARAPAHOE RD 80122-00ND T 68.3400000 LITTLETON

To enable Prefer ZIP Over City in the AddressBroker server, modify the abserver.ini file to
include the PREFER_ZIP_OVER_CITY property. For example:
PREFER_ZIP_OVER_CITY = True

Options are True or False. The default value for PREFER_ZIP_OVER_CITY is False.

To activate Prefer ZIP Over City from the client, use the appropriate SetProperty method
based on your language:

• Java - The Java client API uses a “setter” to enable Prefer ZIP Over City:
– ab.setProperty(“PREFER ZIP OVER CITY”, “True”);

• .NET - The .NET client API uses a “setter” to enable Prefer ZIP Over City:
– ab.setProperty(“PREFER ZIP OVER CITY” , “True”);

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:
– QABSetPropertyStr(broker, PREFER ZIP OVER CITY” , “True”);

• C++ - broker->SetProperty(“PREFER ZIP OVER CITY” , “True”);

Matching address ranges

Some business locations are identified by address ranges and can be geocoded to the
interpolated mid-point of the range. Address ranges are different from hyphenated (dashed)
addresses that occur in metropolitan areas. For example, a hyphenated address could be
243-20 Main St, which represents a single residence and is geocoded as a single address.
If a hyphenated address similar to this example returns as an exact match, then there is no
attempt to address range match.

AddressBroker Reference Manual for Windows 36

Address range matching is disabled by default and is an optional mode. To enable address
range matching, use the settable property “RANGED_ADDRESS”. Address range matching
is only available in Close and Extend modes. It is not available in Exact or CASS™ modes
since an address range is not a deliverable USPS® address. The following fields are not
returned by address range geocoding:

• ZIP+4® (in multiple segment cases)
• Delivery Point
• Check Digit
• Carrier Route
• Record Type
• Multi-Unit
• Default flag

Address Range matching capabilities and guidelines

Address Range matching works within the following guidelines:

• There must be two numbers separated by a hyphen.
• The first number must be lower than the second number.
• Both numbers must be of the same parity (odd or even) unless the address range itself

has mixed odd and even addresses.
• Numbers can be on the same street segment or can be on two different segments. The

segments do not have to be contiguous.
• If both numbers are on the same street segment, the geocoded point is interpolated to

the approximate mid-point of the range.
• If the numbers are on two different segments, the geocoded point is based on the last

valid house number of the first segment. The ZIP Code and FIPS Code are based on
the first segment.

• In all cases, odd/even parity is evaluated to place the point on the correct side of the
street.

The Address Range match in the example below is to a single street segment with the
geocode being placed on the mid-point of the range:

Input: 4750-4760 Walnut St, Boulder, CO
Output: 4750-4760 Walnut St, Boulder, CO

A close match to a single address number is preferred over a ranged address match.
AddressBroker attempts a close match on the recombined address number before making
a ranged match, as seen in the following example:

Input: 47-50 Walnut St, Boulder, CO
Output: 4750 Walnut St, Boulder, CO

AddressBroker Reference Manual for Windows 37

In the example below, the second number is not larger than the first so AddressBroker
treats this as a unit number rather than a ranged address:

Input: 4750-200 Walnut St, Boulder, CO
Output: 4750 Walnut St STE 200, Boulder, CO

See Match codes and Location Codes for more information on the return codes.

To enable Address Range Geocoding in the AddressBroker server, modify the abserver.ini
file to include the following:
RANGED_ADDRESS = TRUE

Options are TRUE or FALSE. The default value for RANGED_ADDRESS is FALSE.

To activate Address Range Geocoding from the client, use the appropriate SetProperty
method based on your language:

• Java - The Java client API uses a “setter” to enable Address Range Geocoding:
– ab.setProperty(“RANGED_ADDRESS”, “TRUE”);

• .NET - The .NET client API uses a “setter” to enable Address Range Geocoding:
– ab.setProperty(“RANGED_ADDRESS“, “TRUE”);

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:
– QABSetPropertyStr(broker, "RANGED_ADDRESS", "TRUE");

• C++ - broker->SetProperty("RANGED_ADDRESS", "TRUE");

Please note that the default state is set to false: no Address Range Geocoding.

Understanding missing and wrong first letter

The missing and wrong first letter feature enables AddressBroker to look for the correct first
letter of a street address if the first letter is missing or incorrect. AddressBroker searches
through the alphabet looking for possible, correct first letters to complete the street address.

The feature’s default is disabled, except in EXACT mode or the equivalent CUSTOM mode
settings. To enable this feature, modify "FIRST_LETTER_EXPANDED".

Below are some examples of wrong, missing first letter, and duplicate first letter input
addresses and the corresponding AddressBroker output:

The example include an incorrect first letter:

Input: 4750 nalnut boulder co 80301
Output: 4750 Walnut St Boulder CO 80301-2532

AddressBroker Reference Manual for Windows 38

This example excludes a first letter:

Input: 4750 alnut boulder co 80301
Output: 4750 Walnut St Boulder CO 80301-2532

This example includes an extra first letter:

Input: 4750 wwalnut boulder co 80301
Output: 4750 Walnut St Boulder CO 80301-2532

AddressBroker Reference Manual for Windows 39

Permitting relaxed address number matching

When AddressBroker matches an input address, its default behavior is to match to the
address number. This default behavior corresponds to "MUST_MATCH_ADDR_NUM" set
to True.

If "MUST_MATCH_ADDR_NUM" is set to False, then AddressBroker no longer must match
the address number, therefore permitting relaxed address number matching. By permitting
relaxed address number matching, an inexact match can be found. If the input address
number is missing, no matches are returned unless STREET_CENTROID is also enabled.

When using Relaxed Address Number Matching, if there is no match to the input house
number, or if the input house number is blank, the result returned from AddressBroker
indicates a non-match. This is because AddressBroker is not able to make a match based
on the input data. However, AddressBroker will return a geocode to the nearest available
house number on the input street.

Note: Relaxed Address Number Matching is only available with Custom match mode.

To enable Relaxed Address Number Matching in the AddressBroker server, modify the
abserver.ini file to include the following:

MUST_MATCH_ADDR_NUM = FALSE

Options are TRUE or FALSE. The default value for MUST_MATCH_ADDRR_NUM is TRUE.

To activate Relaxed Address Number Matching from the client, use the appropriate
SetProperty method based on your language:

• Java - The Java client API uses a “setter” to enable Relaxed Address Number
Matching:
– ab.setProperty(“MUST_MATCH_ADDRR_NUM“, “FALSE”);

• .NET - The .NET client API uses a “setter” to enable Relaxed Address Number
Matching:
– ab.setProperty(“MUST_MATCH_ADDRR_NUM“, “FALSE”);

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:
– QABSetPropertyStr(broker, "MUST_MATCH_ADDRR_NUM", " FALSE");

• C++ - broker->SetProperty("MUST_MATCH_ADDRR_NUM", " FALSE");

Please note that the default state is set to true: no Relaxed Address Number Matching
processing – must match on address number.

AddressBroker Reference Manual for Windows 40

Understanding address point interpolation

Address point interpolation uses a patented process that improves upon regular street
segment interpolation by inserting point data into the interpolation process. When an
address point User Dictionary (UD) or a point GSD is present, more precise address
geometry is used for interpolation than what is available by the use of street segments
alone. Please note that this feature does not work with point addresses in the Auxiliary File.

In order to implement this feature, you must have:

 - point data (UD or licensed GSD) loaded

 - "ADDR_POINT_INTERP" property set to “True”

AddressBroker will first attempt to find a match using the loaded point data, in priority order.
If an exact point match is found in the point data, then searching ceases and the point
match is returned. If an exact point match was not found, AddressBroker attempts to find
high and low boundary address points to use for address point interpolation. To illustrate the
use of this feature, view the example below.

In this example, the input house number is 71. The point GSD contains address points for
house numbers 67 and 77. The street segment ranges from house number 11 to 501 and
contain shape lines describing the physical layout of the street.

AddressBroker attempts to map the points for addresses 67 and 77 onto the closest shape
line. After finding a point on the centerline of the street, GeoStan then performs the
interpolation for the input house number 71 with the new street centerline points of 67 and
77. Without this feature, GeoStan performs an interpolation with the street segment end
points of 11 and 501. This creates a far less accurate result (labeled in the diagram) than
using the centerline points of the closest surrounding high and low address points.

AddressBroker Reference Manual for Windows 41

See Match codes and Location Codes for information on the return codes related to this
feature.

To enable address point interpolation in the AddressBroker server, modify the abserver.ini
file to include the following:
ADDR_POINT_INTERP = TRUE

Options are TRUE or FALSE. The default value for ADDR_POINT_INTERP is FALSE.

To activate address point interpolation from the client, use the appropriate SetProperty
method based on your language:

• Java - The Java client API uses a “setter” to enable address point interpolation:
– ab.setProperty(“ADDR_POINT_INTERP“, “TRUE”);

• .NET - The .NET client API uses a “setter” to enable address point interpolation:
– ab.setProperty(“ADDR_POINT_INTERP“, “TRUE”);

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:

AddressBroker Reference Manual for Windows 42

– QABSetPropertyStr(broker, "ADDR_POINT_INTERP", "TRUE");

• C++ - broker->SetProperty("ADDR_POINT_INTERP", "TRUE");

Note that the default state is set to false: no address point interpolation.

Note: Also see Using User Dictionaries with address point interpolation.

Matching to a geographic centroid

Geographic centroids can be returned by inputting valid combinations of city, county, and
state or as a fallback. You can geocode to the city, county, or state centroid. Although
geographic centroid geocoding is less precise than street or postal geocoding, it may be
suitable for certain applications.

Geographic centroid matching uses a new option called “FALLBACK_GEOGRAPHIC”.
When this option is enabled, AddressBroker will return a geographic centroid match when it
cannot match a record to the level of precision originally requested, such as street level or
ZIP Code level. For geographic geocoding, AddressBroker returns the most precise
geographic centroid that it can, based on the user input.

See Match codes and Location Codes for more information on the return codes related to
this feature.

A number of prominent U.S cities can be matched even if no other information is provided.
(Ex.: Chicago (input city) but no input state, matches to Chicago, IL. The ability to match on
an input city is determined by the geographic rank of the city (1-7). Cities with a geographic
rank of 1 or 2 are able to be matched without an input state.

Output fields:

"Geographic Rank" - Relative city ranking (1-7). Options are True or False. The default
value for FALLBACK_GEOGRAPHIC is False.

To activate fallback to geographic centroid matching from the client, use the appropriate
SetProperty method based on your language:

• Java - The Java client API uses a “setter” to enable Geographic Centroid Matching:
– ab.setProperty(“FALLBACK_GEOGRAPHIC”, “True”);

• .NET - The .NET client API uses a “setter” to enable geographic centroid matching:
– ab.setProperty(“FALLBACK_GEOGRAPHIC “,"True");

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:
– QABSetPropertyStr(broker, " FALLBACK_GEOGRAPHIC ", "True");

• C++ - broker->SetProperty("FALLBACK_GEOGRAPHIC ", "True");

AddressBroker Reference Manual for Windows 43

Understanding Extended Match Codes

The Extended Match Code property enables the return of additional information about any
changes in the house number, unit number and unit type fields. In addition, it can indicate
whether there was address information that was ignored. The Extended Match Code is only
returned for address-level matches (match codes that begin with A, G, H, J, Q, R, S, T or U),
in which case a 3rd hex digit is appended to the match code (see GeoStan return codes).

Note: A typical match code contains up to 4 characters: a beginning alpha character
followed by 2 or 3 hex digits. The third hex digit is only populated for intersection
matches or as part of the Extended Match Code.

For information about the 3rd hex digit values for:

– Intersection matches, see “Definitions for 1st-3rd hex digit match code values” on
page 424.

– Extended Match Codes, see “Definitions for Extended Match Code (3rd hex digit)
values” on page 425.

 “Address information ignored” is specified when any of the following conditions apply:

• The output address has a mail stop (Mailstop).
• The output address has a second address line (AddressLine2).
• The input address is a dual address (two complete addresses in the input address). For

example, “4750 Walnut St. P.O Box 50”.
• The input last line has extra information that is not a city, state or ZIP Code, and is

ignored. For example, “Boulder, CO 80301 USA”, where “USA” is ignored when
matching.

Input Addressline Output Addressline
Extended

Code Description

4750 WALNUT ST STE 200 4750 WALNUT ST STE 200 0 Matched on all address information
on line, including Unit Number and
Unit Type if included.

4750 WALNUT ST C/O JOE SMITH 4750 WALNUT ST 1 Matched on Unit Number and Unit
Type if included. Extra information
on address line ignored. Extra
information not considered for
matching moved to AddressLine2
or Mail Stop field.

4750 WALNUT ST UNIT 200 4750 WALNUT ST STE 200 2 Matched on Unit Number. Unit
Type changed.

AddressBroker Reference Manual for Windows 44

4750 WALNUT ST UNIT 200 C/O JOE SMITH 4750 WALNUT ST STE 200 3 Matched on Unit Number. Unit
Type changed. Extra information
on address line ignored. Extra
information not considered for
matching moved to AddressLine2
or Mail Stop field.

4750 WALNUT ST STE 2-00 4750 WALNUT ST STE 200 4 Unit number changed or ignored.

4750 WALNUT ST STE 2-00 C/O JOE SMITH 4750 WALNUT ST STE 200 5 Unit Number changed or ignored.
Extra information on address line
ignored. Extra information not
considered for matching moved to
AddressLine2 or Mail Stop field.

4750 WALNUT ST STE 400 4750 WALNUT ST STE 400 6 Unit Number changed or ignored.
Unit Type changed or ignored. In
this example, Suite 400 is not valid
for the input address, but the
address match is not prevented
because of an invalid unit number.

4750 WALNUT ST UNIT 2-00 C/O JOE SMITH 4750 WALNUT ST STE 200 7 Unit Number changed or ignored.
Unit Type changed or ignored.
Extra information on address line
ignored. Extra information not
considered for matching moved to
AddressLine2 or Mail Stop field.

47-50 WALNUT ST STE 200 4750 WALNUT ST STE 200 8 Matched on Unit Number and Unit
Type if included. House Number
changed or ignored.

47-50 WALNUT ST STE 200 C/O JOE SMITH 4750 WALNUT ST STE 200 9 Matched on Unit Number and Unit
Type if included. House Number
changed or ignored. Extra
information not considered for
matching moved to AddressLine2
or Mail Stop field.

47-50 WALNUT ST UNIT 200 4750 WALNUT ST STE 200 A Matched on Unit Number. Unit
Type changed. House Number
changed or ignored.

47-50 WALNUT ST UNIT 200 C/O JOE SMITH 4750 WALNUT ST STE 200 B Matched on Unit Number. Unit
Type changed. House Number
changed or ignored. Extra
information on address line
ignored. Extra information not
considered for matching moved to
AddressLine2 or Mail Stop field.

47-50 WALNUT ST STE 20-0 4750 WALNUT ST STE 200 C House Number changed or
ignored. Unit Number changed or
ignored.

47-50 WALNUT ST STE 20-0 C/O JOE SMITH 4750 WALNUT ST STE 200 D House Number changed or
ignored. Unit number changed or
ignored. Extra information on
address line ignored. Extra
information not considered for
matching moved to AddressLine2
or Mail Stop field.

Input Addressline Output Addressline
Extended

Code Description

AddressBroker Reference Manual for Windows 45

To enable the return of Extended Match Codes in the AddressBroker server, modify the
abserver.ini file to include the MATCH_CODE_EXTENDED property. For example:
MATCH_CODE_EXTENDED = True

Options are True or False. The default value for MATCH_CODE_EXTENDED is False.

To activate Extended Match Codes from the client, use the appropriate SetProperty method
based on your language:

• Java - The Java client API uses a “setter” to enable Extended match codes:
– ab.setProperty(“MATCH_CODE_EXTENDED”, “True”);

• .NET - The .NET client API uses a “setter” to enable Extended match codes:
– ab.setProperty(“MATCH_CODE_EXTENDED”, “True”);

• ActiveX - Does not set properties using enumerators (enums), so no changes are
required.

• C – Use the appropriate SetProperty method based on your language:
– QABSetPropertyStr(broker, “MATCH_CODE_EXTENDED”, “True”);

• C++ - broker->SetProperty(“MATCH_CODE_EXTENDED”, “True”);

Note: For information on returned match codes see Definitions for Extended Match Code
(3rd hex digit) values.

Understanding User Dictionaries

A User Dictionary is a table of streets and address ranges that you use as a source for
geocoding. If you have newer or more precise data than what is available in GSD files,
creating a dictionary with this data can help you obtain more accurate geocoding results.
For example, if you have address point data you can create a User Dictionary that enables
you to take advantage of the AddressBroker address point interpolation capabilities.

A User Dictionary can be used by itself to geocode records, or can be used in combination
with the supplied GSD.

47-50 WALNUT ST UNIT 20-0 4750 WALNUT ST STE 200 E House Number changed or
ignored. Unit Number changed or
ignored. Unit Type changed or
ignored.

47-50 WALNUT ST UNIT 2-00 C/O JOE
SMITH

4750 WALNUT ST STE 200 F House Number changed or
ignored. Unit Number changed or
ignored. Unit Type changed or
ignored. Extra information on
address line ignored. Extra
information not considered for
matching moved to AddressLine2
or Mail Stop field.

Input Addressline Output Addressline
Extended

Code Description

AddressBroker Reference Manual for Windows 46

For more information see User Dictionary.

Note: The USPS does not consider matches to data that they did not create and these are
not considered valid addresses for postal delivery. Therefore, AddressBroker does
not match to User Dictionaries when processing in CASS mode

GeoStan Canada

A standardized Canadian address contains the street address, municipality, province, and
complete postal code, corrected to Canada Post Corporation (CPC) standards. A geocoded
address contains the address as found in the CPC data files, as well as the latitude and
longitude. A detailed match code is also returned for each process.

GeoStan Canada uses data from Precisely’s Enhanced Address Geocoding database and
the CPC Postal Code data files.

Note: More predictable results are achieved when the postal code is entered. Canadian
addresses are standardized according to SERP regulations, which are very different
than USPS CASS regulations.

Demographics Library functionality
AddressBroker lets you query a Demographic Library data (.dld) file for demographic
information. Attach this data to an address record to enhance targeted marketing efforts.
When processing records, AddressBroker automatically uses GeoStan data, such as the
Census Block and ZIP9 fields, as input to the Demographics Library.

Currently, the available data source is the U.S. Census. All the Demographics Library data
is available with AddressBroker.

Spatial+ functionality
By incorporating Spatial+ functionality, AddressBroker lets you compare geocoded
addresses to spatial (.gsb) files. Point-in-polygon analysis determines within which
geographic areas (spatial polygons) a known point falls. For example, you could use point-
in-polygon analysis to assign a sales territory for new customer records, or for calculating
which store trade areas contain the most overlap by measuring the amount of customer
overlap rather than the area of overlap. Assigning closest site or radial analysis determines
a geocode’s distance from a site point, its orientation to the site point, and the site point’s
name. For example, you could use closest site or radial analysis to determine which store is
closest to each customer, to determine the five closest doctors to a potential client, or listing
up to 20 store locations within 15 miles of a proposed site.

Note: AddressBroker automatically uses Latitude and Longitude field values from GeoStan
with the Spatial+ Library.

AddressBroker Reference Manual for Windows 47

Spatial objects describe various types of either topographic items (such as mountains,
streets, or buildings) or geographic features (conceptual areas such as municipal
boundaries, auto rating territories, or statistical analysis areas). These features can be
described mathematically as points, lines, or polygons and are saved in a spatial (.gsb) file.

The Spatial+ functionality within AddressBroker requires .gsb files, which is a proprietary
format. Contact your Precisely sales representative for information about creating .gsb files.
For additional information about the Spatial+ Library, see the Spatial+ Reference Manual.

Spatial attributes

You can also include your own data by using “attributes”. These Spatial attributes might
include population counts, revenue figures, demographic characteristics, or other
information specific to a region or specific location. You can view the attribute information
after you choose your input file, specify the input and outfield fields, and process the data.

Geographic Determination Library functionality
The Centrus Geographic Determination Library (GDL) is designed to be used in conjunction
with GeoStan. By accessing the actual run-time values created by GeoStan, GDL can
generate a dynamic geo-variance buffer around the geocode and then perform several
spatial comparison operations to generate a numeric confidence value.

Geo-variance buffer generation

GeoStan performs geocoding based on address data. A geocode, that is, the particular
latitude/longitude coordinates associated with an address, can have one of four basic levels
of quality associated with it. This quality level is determined by the address information
provided and the data available in a data look-up table.

GDL uses this quality level to create a polygon or geo-variance buffer around the geocoded
point. This polygon describes the maximum probable geographic variance that point may
have. For example, an address level geocode may have a variance of +/-165 feet
East/West and +/-50 feet North/South. The geo-variance polygon outlines the boundary of
this 33,000 square foot area. After this buffer is calculated, it can be compared to other
spatial objects for accurate determinations.

AddressBroker Reference Manual for Windows 48

Comparison operations

GDL is able to access spatial .gsb files and the objects they contain to perform linear and
percentage overlap comparison operations.

Geo-demographic data
AddressBroker is more than a programming library. AddressBroker’s geo-demographic data
is also integral to the AddressBroker product. The geo-demographic data available to you
depends on your license agreement with Precisely. Geo-demographic data is required to
process your address records. This data is available via the Precisely eStore. You provide
your own data converted to the .gsb format for use with Spatial+ and GDL. GeoStan
Canada data is installed with the software.

The data installation includes a file named datasets.txt in the Datasets and the
Datasets\UNIX directories. Refer to this file for detailed descriptions of the data sets.

Note: In some instances, you provide your own data for use within AddressBroker, for
example, specific spatial data for spatial analysis.

In client/server applications, better performance is achieved when the geo-demographic
data is stored on the server. Data can be accessed remotely, but be aware of possible
issues concerning permissions. See “Accessing remote data on UNIX platforms” on
page 87 if you are running a UNIX operating system.

Comparison Operation Description

Linear Distance GDL can determine distance relationship such as:
- How far is this house from a fire station?
- How far from the edge of a potential mudslide area
does a building stand?

GDL can return a distance value in feet which describes either
how close or far away a given point or line is from a geo-
variance buffer.

Percentage Overlap A typical problem might be whether or not an address falls
inside a specific area. For example, is this house in a flood
zone? Once GDL has created a geo-variance buffer, it is able
to calculate if the buffer overlaps with another polygon and, if
it does, how much it overlaps. The percentage value returned
describes the probability that a point falls in the comparison
area.

AddressBroker Reference Manual for Windows 49

Types of data

AddressBroker uses several types of geo-demographic data. The data you need depends
on the type of address processing you want AddressBroker to do and your license.

Geo-demographic data types include:

• Address standardization data—Used to standardize addresses to USPS and CPC
specifications.

• Geocoding data—Used to enhance your address data with geographic information
(latitude and longitude).

• Demographics data—Used to enhance your address data with valuable demographic
information, for example Census2k.dld. Demographics data must be in .dld format.

• Spatial data—Used to perform spatial analysis using polygon, line, and point files such
as States.gsb and Counties.gsb. These files are included as sample data; provide
your own spatial data for your specific data analysis and use your own spatial data to
perform spatial enhancement. Spatial data must be in .gsb format.

• Geographic Determination data—Used to enhance your data by working in conjunction
with GeoStan to assign a confidence rating to the geocode. Geographic determination
data must be in .gsb format.

• Point-Level Option—Used to enhance your data by locating addresses at the center of
the building footprint or parcel. This provides enhanced geocoding accuracy for Internet
mapping, flood hazard determination, property and casualty insurance,
telecommunications, and the utility industries.

• DPV® data — Used to enhance your data by using the USPS Delivery Point Validation
(DPV) technology that validates the accuracy of address information down to the
physical delivery point.

• RDI™ data — Used to enhance your data by using the USPS Residential Delivery
Indicator to verify if an address is a residence or a business.

• LACSLink data — Used to enhance your data by correcting address lists for areas that
have undergone Locatable Address Conversion System (LACS) processing. Address
list conversion occurs when the LACS process modifies, changes, or replaces an
address. This usually occurs due to one of the following: the conversion of rural routes
and box numbers to city-style addresses, the renaming or renumbering of existing city-
style addresses to avoid duplication, or the establishment of new delivery addresses.

Updating data

AddressBroker provides you with a way to swap the GSB files without having to re-initialize
the application; this is referred to as a hot data swap.

AddressBroker Reference Manual for Windows 50

GSB and GSA file dependencies

AddressBroker processes hot swapable GSB and GSA files in the following manner:

• During server initialization, if a GSA file is found in the HotSwap or Working directory
with an associated GSB file, AddressBroker associates the GSA file with the GSB files.
Once a GSB is considered to have attributes, it must have a valid attribute file from this
point forward.

• If a GSA file appears in a directory without an associated GSB file, AddressBroker does
not take any action. AddressBroker only recognizes GSA files when the associated
GSB file is in the same directory.

• If a GSB file has previously had an associated GSA file, you must provide a new GSA
file when you update the GSB file in the HotSwap directory. If you update an attributed
GSB file and do not provide the associated GSA file, AddressBroker displays an
informational message and will not update the GSB file until the associated GSA file is
present.

• If you introduce a GSA file for a GSB file that did not previously have an associated
GSA file, AddressBroker recognizes the file and henceforth associates a GSA file with
the GSB file.

Configuring your system for hot data swap

To use the hot data swap option, you need to include the following properties in your
initialization file (abserver.ini):

• HOTSWAP_DIRECTORY
The path and name of the directory where the server administrator places the GSB files
that AddressBroker loads and the corresponding attribute files (.GSA files). This must
refer to a single directory.

• Do NOT put static GSB files (files that are not hot data swapable) in the HotSwap
directory.

• WORKING_DIRECTORY
The path and name of the directory where the server holds GSB files it is currently using
for processing. Users should not place files into or remove files from this directory.
AddressBroker appends the version number to the file name when it moves the file to
the working directory.

• DISCARD_DIRECTORY
The path and name of the directory where the server places old versions of the GSB
files. Users should monitor and clean this directory as part of regular maintenance
activities.

• ERROR_DIRECTORY
The path and name of the directory where the server places GSB files that have failed
verification. Users should monitor and clean this directory as part of regular
maintenance activities. AddressBroker appends a time stamp and the suffix “Error” to
the file name when it moves the file to the error directory.

AddressBroker Reference Manual for Windows 51

• POLLING_TIME
The time interval, in seconds, between successive polls of the hot swap directory. The
range is between 1 and 86400 seconds.

The discard and error directories may occupy the same location. All other directories must
be distinct.

Note: Precisely strongly recommends that you configure the preceding directions on the
same file system to avoid longer latency times when you add a new file to the hot
swap directory.

To indicate that AddressBroker can hot swap a particular file, add the HOTSWAP keyword to
the definition for the GSB file in the initialization file.

Logging

AddressBroker logs the following events for the hot swap files:

Example code

The following is an example fragment for the initialization file. It indicates that
AddressBroker can hot swap the files for AUTO and HOME, but cannot hot swap the files for
FLOOD.

; Directory configuration for hot swapping
HOT_SWAP_DIRECTORY = “C:\Datasets\Hotswap”
WORKING_DIRECTORY = “C:\Centrus\Working”
DISCARD_DIRECTORY = “C:\Datasets\old”
ERROR_DIRECTORY = “C:\Datasets\errors”
; Check for new data files every 10 seconds
POLLING_TIME = 10

; Spatial Paths
SPATIAL_PATHS = [AUTO]HOTSWAP\auto.gsb | \ [HOME]HOTSWAP\home.gsb
SPATIAL_PATHS = [FLOOD]C:\Data\fema.gsb

Event Debug Server

File moves or relocates X X

New version of a file becomes available for use by the handles. X X

The last transaction processed with a file before the server places the file
in the discard directory.

X X

File fails validation. X X

Server finds more than one version of a file in the working directory at
startup.

X X

Server recognizes a new version of a file in the hot swap directory. X

Validation success. X

AddressBroker Reference Manual for Windows 52

AddressBroker components
The AddressBroker product is made up of three main components—the AddressBroker
initialization/configuration file interpreter, programming libraries, and geo-demographic data
files.

The file interpreter reads an .ini file in text format. See Using Initialization Files for
information about .ini files. AddressBroker’s programming libraries access the appropriate
reference files and customer data files needed to complete a processing request.
Information is passed between programming libraries as required.

Client/Server model
You can run many client applications using a single AddressBroker server. Typically, the
AddressBroker Server is executed with several instance handles. The Handle Manager
distributes incoming client requests among these handles to expedite processing. The
server includes a queuing mechanism to handle simultaneous client requests.

An individual client request may consist of a single record or multiple records.
AddressBroker bundles all of the required information on the client side, then sends it as a
single request to the server. The server instance processes the entire request, then returns
a single response to the requesting client.

Communication transactions are made at only four points in an AddressBroker client/server
application:

• The AddressBroker client object is created.
• AddressBroker properties are validated.

AddressBroker Reference Manual for Windows 53

• Address records are processed or an address lookup is done.
• Field attributes are requested.

Application programming model
AddressBroker uses a common application programming model across all its interfaces.
See Chapter 5 Client Applications for additional information about client applications.

Basically, all AddressBroker applications include calls to:

1. Create and initialize the AddressBroker object or handle.

2. Set AddressBroker properties to control the processing behavior of AddressBroker. All
of AddressBroker’s interfaces support the use of a SetProperty function to achieve this
task. In C, C++, and ActiveX you can also set properties using an .ini file. In ActiveX,
you can also use ActiveX properties to accomplish this step.

3. Ensure that a complete set of legal and compatible AddressBroker properties are
available to the application using the ValidateProperties function.

4. Load one or more input address records into AddressBroker for processing using
SetField and SetRecord.

5. Process the records using either ProcessRecords or LookupRecord.

6. Retrieve the output using GetRecord and GetField.

7. Delete the AddressBroker object.

Memory management
Because each client request contains all information necessary for processing, the
AddressBroker server does not maintain state information about each connected client.

Within your application, you need only allocate memory to create an AddressBroker
instance and free it when the instance is destroyed. AddressBroker allocates and clears all
data input and output buffers automatically.

In addition, AddressBroker functions let you query the type, size, and description of
AddressBroker property and field values before actually retrieving them. You can retrieve
the size of a field’s value to efficiently allocate memory in your code.

Threads and multi-threading
AddressBroker client objects are thread-safe when each client instance resides in its own
thread. The AddressBroker server is multi-threaded and configured for multiple client
applications.

AddressBroker Reference Manual for Windows 54

Note that the multi-threaded functionality of AddressBroker requires the multi-threaded
support library. Clients developed for AddressBroker and installed on machines other than
the development machine require installation of the development environment’s libraries
that support multi-threaded applications. For example, clients developed using the
Microsoft Visual C/C++ environment and installed on machines without the development
environment require that msvcrt.dll be installed with the client.

Programming interfaces
AddressBroker provides the following programming interfaces:

• Java – Client/server, Internet applications
• .NET – Client/server, Internet applications
• C – Client/server, Internet applications
• C++ – Client/server, Internet applications
• ActiveX component – Client/server, Internet applications

The APIs are available as import libraries and DLLs for 32- and 64-bit Windows developers
and as JAR files for Java developers. On UNIX platforms, the APIs are available as either
static or dynamic libraries.

In all of the programming languages supported, AddressBroker is an easy-to-use property
and field keyword-driven interface. For convenience and readability, AddressBroker
keywords are case insensitive, as well as insensitive to spaces and underscores. For
example, “FIRMNAME” is equivalent to “Firm Name” and “firm_name”.

3 – System Requirements

In this chapter

Platform support 56
Windows DLL files and UNIX libraries 56
Operating system support for AddressBroker APIs 57

AddressBroker Reference Manual for Windows 56

This chapter describes the system requirements for AddressBroker.

Platform support
You can install a thread-safe version of AddressBroker on the platforms listed in the table
below.

*GeoStan Canada not supported on these platforms.

Note: To see a list of the specific OS versions that Precisely supports, see the GeoStan
Suite Supported Platforms document available at http://support.precisely.com.

Windows DLL files and UNIX libraries
AddressBroker is distributed as Windows DLL files and as UNIX C libraries. The table
below lists the filenames for the UNIX libraries and Windows DLL files.

Windows OS UNIX OS

Windows 7
Windows 8
Windows Server 2008
Windows Server 2012

IBM AIX*

HP-UX

Sun Solaris

SuSE Linux*

Redhat Linux*
Redhat Enterprise*

Platform Filename Example

UNIX lib<progname>MT.<suffix> libabMT.a

Windows <progname>MT.dll AB.dll

http://support.precisely.com

AddressBroker Reference Manual for Windows 57

Operating system support for AddressBroker APIs
The table below lists the AddressBroker APIs that are supported on each OS.

OS C/C++ JAVA .Net

Windows OS

UNIX OS

4 – Using Initialization
Files

In this chapter

Guidelines for creating initialization files 59
Sample .ini file 60
Initializing AddressBroker servers using .ini files 61
Logical names 62
AddressBroker properties 62
INPUT_FIELD LIST and OUTPUT_FIELD_LIST 66

AddressBroker Reference Manual for Windows 59

An initialization/configuration file is an ASCII text file that sets AddressBroker properties. A
language interpreter executes initialization (.ini) files from within AddressBroker. The
language interpreter executes whenever you create an instance of the AddressBroker
object or start an AddressBroker server.

Initialization files fulfill several important roles in AddressBroker:

• An .ini file sets server properties.
• An .ini file is used optionally to initialize client objects.
• End users can modify property settings using .ini files, without changing compiled code.

The information in this chapter applies to both client and server .ini files.

Guidelines for creating initialization files
The following list includes some general features and guidelines for using .ini files:

• Must be ASCII text files.
• Blank lines are ignored.
• Comments are permitted, except on the GEOSTAN_PATHS line. The first non-space

character on comment and no-op instruction lines is a semi-colon (;).
• The instruction syntax for setting properties is:

PROPERTY_NAME = Value

where PROPERTY_NAME is a string name of an AddressBroker property and Value is a legal
value specific to the property being set. See “Sample .ini file” on page 60.

• Property names are insensitive to case (upper/lower), extra spaces, and underscores.
• Property names are never quoted. The general rule is that any term occurring on the left

side of an assignment statement may not be quoted.
• Keywords and values generally follow the syntax of their programmatic counterparts.
• Set Boolean values as follows:

TRUE: True, true, TRUE, T, t, Yes, yes, YES, Y, y,
 1 (numeric one)

FALSE: False, false, FALSE, F, f, No, no, NO, N, n,
 0 (numeric zero)

• When setting values for AddressBroker’s long integer properties, use the numeric
representation not the preprocessor macro code. For example:

MATCH_MODE = 1

 not

MATCH_MODE = MODE_CLOSE.

AddressBroker Reference Manual for Windows 60

• All values may be quoted. The general rule is that any term occurring on the right side of
an assignment statement may be quoted. Values that include a list delimiter (such as a
space) require quotes. Values that do not include a list delimiter do not require quotes.

• Single or double quotes may be used.
• Unmatched quotes result in an error.
• If assigning more than one value to a property name, separate the values using either

the tab (\t) or pip (|) delimiters.
• Properties that take lists are only required to quote the individual entries in the list, not

the entire list:

PROPERTY_NAME = "Value" | "Value" | "Value"

• Multiline instructions may be constructed by using a backslash (\) before end of the
line. When a backslash precedes the end-of-line character, the following line is parsed
as a continuation of the preceding line.

• Multiline instructions do not support quoting. (Quoted strings may not span multiple
lines.)

Sample .ini file
The following code sample provides an example server .ini file. This example illustrates
most of the features and requirements of the language, as described in the following
sections. The example is specific to an AddressBroker server; however, client .ini files are
similar.

Note: The *_PATHS properties are set only in the server .ini file.
; AddressBroker server .ini file
; This is a comment.

; Extra spaces and blank lines are permitted.

; All paths in this ini file reflect the default WINDOWS
; installation directory structures.
; No need to quote value here because value contains no
; characters that function as list delimiters.
STATUS LOG = EVENTLOG

STATUS LEVEL = SERVER

; Set the required path properties
; Required to use quotes for these values because they
; contain characters that function as list delimiters
; (spaces, tabs, pipes).
; Single or double quotes OK

GEOSTAN PATHS =
[GEOSTAN] "C:\Program Files\Centrus\cd2tiger" | \
[GDT] "C:\Program Files\Centrus\cd2gdt"

; Multiline instructions.
; Note the backslash (\) characters.

AddressBroker Reference Manual for Windows 61

GEOSTAN Z9 PATHS = \
[GEOSTAN_Z9]"C:\Program Files\Centrus\cd2tiger\US.z9" | \
[GDT_Z9]"C:\Program Files\Centrus\cd2gdt\us.z9"

; Note that individual list entries are quoted,
; not the entire list.
DEMOGRAPHICS PATHS =
[CENSUS2K] "C:\Program Files\Centrus\CENSUS2K.dld"
SPATIAL PATHS =
[States] "C:\Program Files\Centrus\states.gsb" | \
[Counties] "C:\Program Files\Centrus\counties.gsb"

INIT_LIST = GEOSTAN | GEOSTAN_Z9 | COUNTIES
INPUT_FIELD_LIST = FirmName | AddressLine | \
AddressLine2 | LastLine
OUTPUT_FIELD_LIST = FirmName | City | State |ZIP

; Set the two required license properties
LICENSE PATH = "C:\Program Files\Centrus\AB.lic"
LICENSE KEY = "11111111"

; Set some additional properties on the server

; Match_Mode property set numerically to AB_MODE_CLOSE.
; No need to quote value here because value contains no
; characters that function as list delimiters.
Match Mode = 1
; Offset distance in feet
OFFSET_DISTANCE = 50

; Set Boolean values
KEEP_MULTIMATCH = True
KEEP_COUNTS = False

Initializing AddressBroker servers using .ini files
The AddressBroker server requires an initialization file based on the AddressBroker
Interface Language. The server .ini file contains the full path location of the
geo-demographic data AddressBroker requires and property settings that control the
execution of the AddressBroker server. <Hypertext>“Typical AddressBroker property
settings in a server .ini file” shows a fragment of a server .ini file. It shows the error handling
properties and the properties server applications require. “Sample .ini file” on page 60
includes an example of a complete server .ini file.

 Typical AddressBroker property settings in a server .ini file

STATUS_LOG = EVENTLOG
STATUS_LEVEL = SERVER
LICENSE_PATH = "C:\Program Files\Centrus\AB.lic"
LICENSE_KEY = 11111111
GEOSTAN_PATHS = \
[GEOSTAN] "C:\Program Files\Centrus\cd2tiger" | \
[GDT] "C:\Program Files\Centrus\cd2gdt"
GEOSTAN_Z9_PATHS = \

AddressBroker Reference Manual for Windows 62

[GEOSTAN_Z9]"C:\Program Files\Centrus\cd2tiger\US.z9" |\
[GDT_Z9]"C:\Program Files\Centrus\cd2gdt\us.z9"
SPATIAL_PATHS = [COUNTIES] \
"C:\Program Files\Centrus\COUNTIES.gsb"
INIT_LIST = GEOSTAN | GEOSTAN_Z9 | COUNTIES
INPUT_FIELD_LIST = FirmName | AddressLine | \
AddressLine2 | LastLine
OUTPUT_FIELD_LIST = FirmName | City | State |ZIP

Logical names
Logical names provide a means for an application to find files or directories without knowing
the actual directory or file name. AddressBroker uses logical names to abstract the details
of AddressBroker’s reference data file names and locations. Logical names may refer to
either a data file or a data directory holding a set of related data files. You associate a
unique logical name with a unique data source using AddressBroker’s path properties. For
information about assigning logical names using AddressBroker’s path properties, see
“Optional AddressBroker properties” on page 64.

Note: Logical names must be set for the environment where the files are located.

Set logical names only for server environments, not for a client. In environments using
multiple AddressBroker servers, ensure that the logical names, and the data they point to,
are the same across all servers. This ensures the results returned to a client are consistent,
regardless of the server handling the request.

Logical names are limited to 32 bytes in length including the null terminator, and must be
inclosed in brackets ([]). They are insensitive to spaces, underscores, and case. For
example, “[GEOSTAN_Z9]” is equivalent to “[geostan_z9]” and “[geostan z9]”.

AddressBroker properties
Properties are AddressBroker system-level variables that control how AddressBroker
programs execute, or report on the status of program execution. AddressBroker property
names are insensitive to case, spaces, and underscores. For example, “INIT_LIST” is
equivalent to “Init List” and “initlist”. Throughout this manual, AddressBroker
properties are shown in monospaced capital letters (INIT_LIST).

This section includes a general discussion about properties, as well as in-depth
descriptions of individual AddressBroker properties. For additional information not covered
in the following sections, and a full listing of AddressBroker properties including their default
values, valid input ranges, data type, and descriptions, see Chapter 13 Properties.

Note: AddressBroker and ActiveX make use of the term “property.” Unless otherwise noted,
all references in this manual to the term “property” refer to an AddressBroker
property. ActiveX properties are discussed in Chapter 12 ActiveX Interface.

AddressBroker Reference Manual for Windows 63

Guidelines for setting AddressBroker properties

The following list contains general features and guidelines for setting AddressBroker
properties:

• Defaults—Most AddressBroker properties have a default setting. AddressBroker
applications run with the default values, but you want to set them to better suit the
requirements of your application.

• Requirements—There are a few properties that you are required to set before running
AddressBroker. These are properties that hold information specific to your
AddressBroker application such as your license file and password, and the location of
your reference data. See “Required properties” on page 64 for additional information.

• Delimiters—Some properties are assigned list values. Valid list delimiters are tab (\t)
and vertical bar (|). AddressBroker also supports spaces as list delimiters. Thus, you
must set off in quotes (single or double) list items that include spaces (for example:
INIT_LIST = A|B|“C D”|‘E F’).

• Client applications—In client applications, properties can be set programmatically or
in an .ini file.1 Most client property settings override server properties.

• AddressBroker server—Server properties are always set in an .ini file. Initialization
files consist of property names and values.

• Names vs. IDs—When you set properties in an .ini file, you must use character string
property names instead of property IDs.

• Predefined values—Some AddressBroker properties have a set of predefined values
you must choose from.

• Boolean values—Specify Boolean values as follows:

TRUE: True, true, TRUE, T, t, Yes, yes, YES, Y, y, 1 (numeric one)

FALSE: False, false, FALSE, F, f, No, no, NO, N, n, 0 (numeric zero)

AddressBroker properties in server applications

For server applications, you are (generally) required to set a minimum of seven
AddressBroker properties. These properties hold your AddressBroker licensing information,
name/location information about AddressBroker geo-demographic data, and default
initialization information. Precisely also suggests you set the error reporting properties. After
you set these properties, you can run your application using the default values for other
AddressBroker properties, or configure them to better suit your processing requirements.

In server applications, all properties must be set in an .ini file.

1. The Java API requires you to set client properties programmatically. In ActiveX, you can also use ActiveX properties
to set many AddressBroker properties.

AddressBroker Reference Manual for Windows 64

Required properties

Set the following AddressBroker properties in the server .ini file. The exact number of
properties required depends on the type of processing your application performs.

Optional AddressBroker properties

AddressBroker’s optional path properties are:

DEMOGRAPHICS_PATHS—Logical name and fully specified path and file name of each
Demographics Library data file. These are dld files you purchased from Precisely.

SPATIAL_PATHS—Logical name and fully specified path and file name of each Spatial+ data
file. The files must be in Precisely’.gsb format.

Type Description

License Properties Licensing properties hold information about your AddressBroker licensing agreement.

These properties are always required:
LICENSE_PATH—Fully specified license file name.
LICENSE_KEY—License file key number.

Path Properties AddressBroker’s path properties hold name and location information about the
geo-demographic data AddressBroker uses to standardize and geocode addresses.
When setting path properties, Precisely suggests you list all your geo-demographic
data. Use a unique logical name for each data set.
Values for path properties take two forms:

— A delimited list of fully specified directory names:
Ex. [GEOSTAN] “C:\Program Files\Centrus\cd2tiger” | \

[GDT] “C:\Program Files\Centrus\cd2gdt”

—A delimited list of fully specified path and file names:
Ex. [GEOSTAN_Z9] “C:\Program Files\Centrus\cd2tiger\US.z9” |
\ [GDT_Z9] “C:\Program Files\Centrus\cd2gdt\....”

The most common AddressBroker path properties are:
GEOSTAN_PATHS—Logical name and fully specified directory name of each
GeoStan data source, such as a GDT or Precisely Enhanced data file.
GEOSTAN_Z9_PATHS—Logical name and fully specified path and file name of
each GeoStan us.z9 data file.

Initialization Properties Initialization properties specify the set of all available geo-demographic data, input
fields, and output fields that your application uses.

INIT_LIST—Delimited list of logical names you are using.
INPUT_FIELD_LIST—List of field names that correlate to the format of your input
records. Valid input fields depend upon the INPUT_MODE you are using. See
“INPUT_FIELD_LIST Property” on page 375 for more information.
OUTPUT_FIELD_LIST—List of fully specified field names that you retrieve from your
output records. Available outputs depend on the modules included in your Precisely
license agreement. See “OUTPUT_FIELD_LIST Property” on page 384
for additional information.

AddressBroker Reference Manual for Windows 65

GEOSTAN_C_PATHS—Logical name and fully specified path and file names of GeoStan
Canada data files.

GDL_SPATIAL_PATHS—DEPRECATED. Use SPATIAL_PATHS.

GEOSTAN_Z5_PATHS—Logical name and fully specified path and file name of the zip5.gsb file
used with GDL.

STATUS_LOG—Output destination of all reported messages. Set AddressBroker’s STATUS_LOG
property to either the path and file name for a status log to save status messages, or the
value CONSOLE to display status messages to a console window.

STATUS_LEVEL—Message reporting level. Set this property to the appropriate level of
message reporting you require:

• FATAL – Fatal errors, errors, and warnings.
• ERROR – Errors and warnings only.
• WARN – Warnings only.
• INFO – All information messages.
• NONE – No messages.
• DEBUG – Debug messages; for development only.
• SERVER – To report server-level-only messages. Default.

The STATUS_* properties do not require validation to be used or changed.

Setting AddressBroker path properties

Before executing AddressBroker, you must specify the location of the data used by
AddressBroker’s libraries. This information is passed to AddressBroker in the following
properties:
• GEOSTAN_PATHS

• GEOSTAN_Z9_PATHS

• GEOSTAN_CANADA_PATHS

• DEMOGRAPHICS_PATHS

• SPATIAL_PATHS

• GDL_SPATIAL_PATHS (Deprecated)

These properties associate a logical name with the name and location of your reference
data. The GEOSTAN_PATHS and GEOSTAN_CANADA_PATHS properties require path and directory
names. The other path properties require path and file names.

The following example shows how to associate logical names to data sources and assign
AddressBroker’s path properties. In the following example each data set has a unique
logical name and logical names are shown in bold.

AddressBroker Reference Manual for Windows 66

GEOSTAN_PATHS =
[GEOSTAN] "C:\Program Files\Centrus\cd2tiger" | \
[GDT] "C:\Program Files\Centrus\cd2gdt"
GEOSTAN_Z9_PATHS =
[GEOSTAN_Z9] "C:\Program Files\Centrus\cd2tiger\US.z9" \ |
[GDT_Z9] "C:\Program Files\Centrus\cd2gdt\us.z9"
GEOSTAN_CANADA_PATHS =
[GEOSTAN_C] "C:\Program Files\Centrus\AddressBroker\data"
SPATIAL_PATHS =
[COUNTIES] "C:\Program Files\Centrus\spatial\Counties.gsb"
SPATIAL_PATHS =
[STATES] "C:\Program Files\Centrus\spatial\States.gsb"

Note: You can have more than one SPATIAL_PATHS properties in the abserver.ini file,
with each property defining one or more logicals. If you have a large number of data
sources, Precisely recommends that you use more than one SPATIAL_PATHS property
to avoid errors.

Setting logical names and the INIT_LIST property

AddressBroker’s INIT_LIST property sets the list of logical names (and therefore the data)
that an application can access. Assigning logical names to data in the path properties is not
enough; you must use the INIT_LIST property to define the data sources your application
accesses.

The list of logical names assigned to INIT_LIST is a subset of the list of logical names held
in the LOGICAL_NAMES property. For example, you may have multiple spatial files available,
however a given application may reference only a subset of these files. AddressBroker
supports the use of multiple demographics and spatial files; you can list multiple logical
names in INIT_LIST from the names in GEOSTAN_CANADA_PATHS, DEMOGRAPHICS_PATHS, and
SPATIAL_PATHS and. You must list only one logical name for the GEOSTAN_* paths if you are
performing GeoStan processing.

INPUT_FIELD LIST and OUTPUT_FIELD_LIST
AddressBroker processes each address record as a collection of fields. Fields identify the
specific input and output data associated with an input address record. Field names are not
case sensitive and spaces and underscores are permitted. For example, “FIRM NAME” is
equivalent to “FirmName” and “firm_name”.

To optimize processing, your application defines a subset of input and output fields from the
lists of all available fields in the INPUT_FIELD and OUTPUT_FIELD lists. This subset minimizes
the amount of memory allocated internally by AddressBroker, and in client/server and
Internet applications, the amount of data sent over your network. For example, you may

AddressBroker Reference Manual for Windows 67

submit your address data for processing to AddressBroker’s GeoStan module. This makes
over forty GeoStan output fields available. However, you may only be interested in returning
a subset of these, for example, the address standardization fields and the geocoding fields.

Defining the INPUT_FIELD_LIST

The INPUT_FIELD_LIST contains a delimited list of input field values that describe the
address format of the data records you want to process. The input format determines what
subset of the address input fields are valid for the INPUT_FIELD_LIST.

You can format address information to pass into AddressBroker in the following ways:

• Normal (addressline, addressline2, lastline). The default input format is Normal.
• Parsed lastline (addressline, addressline2, city, state, ZIP Code).
• Multiline. If it is unclear what fields may contain address information (line1, line2, line3,

line4, line5, line6). For additional information about the multiline input mode, see
Appendix A: Advanced Concepts

Note: In addition to address fields, you may also pass in Longitude and Latitude fields
for Spatial analysis.

Defining the OUTPUT_FIELD_LIST

To fully specify output fields, logical names are paired with output field names. This pairing
lets you reference multiple data sources within a single application and control the files
AddressBroker uses to generate output. A field name–logical name pair may not exceed 32
bytes, including the null terminator.

The default field specifier is the logical name for your GeoStan data. The default specifier is
implied, that is, you do not need to list a field specifier with GeoStan output fields. Spatial,
GDL, and Demographics fields must be fully specified using a logical name—even if you
have only one source file for each data type.

Fully specified output field names are assigned to the OUTPUT_FIELD_LIST property. For
example, a hypothetical application requires access to two Spatial+ .gsb files,
Counties.gsb and States.gsb. To determine which source file to use when returning a
value, a logical name is associated with PolygonName.

Note: You must provide logical names for Spatial+, GDL, and Demographics output fields
even if you are not using multiple data sources.

Decimals in input/output field values

Some AddressBroker input/output field values refer to decimal values. In the general case,
values are input and output as integers; you must interpolate the decimal point.

AddressBroker Reference Manual for Windows 68

The table below is an excerpt from one of AddressBroker’s output field lists. The example
shows AVGHHSZ00, defined as a numeric field up to 11 characters long, interpolated with two
decimal places.

(Ex.) AVGHHSZ00 = 235 Average household size equals 2.35.

(Ex.) AVGHHSZ00 = 300 Average household size equals 3.00.

Decimals Exceptional case

AddressBroker’s COORDINATE_TYPE property lets you specify integer or floating decimal point
for the Latitude and Longitude input and output fields. These fields either have or imply
values with six decimal places.

(Ex.) COORDINATE_TYPE = AB_COORD_INTEGER (default).

Latitude = 40123456 value = 40.123456.

(Ex.) COORDINATE_TYPE = AB_COORD_FLOAT

Latitude = 40.123456 value = 40.123456.

Note: Setting COORDINATE_TYPE to AB_COORD_FLOAT lets you enter or retrieve floating decimal
data only for the Latitude and Longitude input and output fields. All other
AddressBroker fields are entered and retrieved as integers.

Output String Field
Name Type Width Decimal Description

AVGHHSZ00 N 11 2 2000 Average Household Size

: : : : :

5 – Client Applications

In this chapter

Installing AddressBroker 70
Backward compatibility 70
Multi-threading support requirements 70
Input/Output address records 70
Initializing a client application 72
AddressBroker properties—client applications 73
Logical names—client applications 77
Input/Output fields 79

AddressBroker Reference Manual for Windows 70

This chapter discusses the initial steps necessary to get your client application up and
running. First this chapter explains how to access the AddressBroker library followed by a
discussion of object initialization via the an initialization file. The last section in this chapter
details the AddressBroker properties that Precisely recommends for client applications.

You can build an AddressBroker client application using any of AddressBroker’s
programming interfaces. TCP/IP sockets are used as the transport protocol for
AddressBroker clients.

Installing AddressBroker
The AddressBroker client object can be installed on the platforms listed in Chapter 3
System Requirements. The ActiveX component is supported on Windows platforms only. In
addition, the Java client runs on any platform with a Java 2 Standard Edition (J2SE) virtual
machine.

In addition to installing the executables, you may also need to install geo-demographic data
files—although typically these data files are stored on a server in client/server applications.

Backward compatibility
AddressBroker versions 1.5 and later are not backwards compatible with previous versions.
However, starting with AddressBroker version 1.5, all AddressBroker version 1.5 or later
clients are operational with all AddressBroker servers of the same version number or
higher.

Multi-threading support requirements
The multi-threaded functionality of AddressBroker requires the multi-threaded support
library. Clients developed for AddressBroker and installed on machines other than the
development machine require installation of the development environment's libraries that
support multi-threaded applications. For example, clients developed using the Microsoft
Visual C/C++ environment and installed on machines without the development environment
require that msvcrt.dll be installed with the client.

Input/Output address records
AddressBroker is a record-based application. The information you provide is entered in
terms of individual records, and the output data you retrieve is record-based.

AddressBroker can process input data from a variety of sources. Your application can read
records from your own customer database, prompt a user to enter an address, or you can
specify the data within your application.

AddressBroker Reference Manual for Windows 71

Managing records

AddressBroker provides full functionality for managing records. Use the following functions
to manage your input records:

• SetField sets the value of an input field in the current input record. This data is used as
input for processing (validation, standardization, and enhancement).

• SetRecord adds data for the current input record (the combined information provided via
multiple calls to SetField) to the input record buffer, then advances the input record
pointer to the next empty record in the buffer.

Use ProcessRecords or LookupRecord to process your records (see “Processing records” on
page 71). Then use the following functions to manage the output records:

• GetField retrieves fields from the current output record.
• ResetField resets the output field pointer to the first value of a

multi-valued output field.
• GetRecord advances the output record pointer.
• ResetRecord resets the record pointer to the first output record.

Processing records

You can use either of the following functions to process records:

• LookupRecord processes one record at a time and finds potential matches iteratively
from partial address information. Use this function when address input records are
incomplete. See “Valid addresses” on page 10 for more information.

• Precisely recommends using ProcessRecords instead of LookupRecord.
• ProcessRecords processes one or more input records for which addresses are complete

enough for standardization. Use this function for multiple (or single) records when
sufficient address information is known.

Reserved characters

RECORD_DELIMITER, FIELD_DELIMITER, and VALUE_DELIMITER have default values of line feed,
tab, and CTRL-A, respectively. If your data contains any of these characters, you must
reset the appropriate AddressBroker property to a different character. In addition, your data
may not contain the null character.

Optimizing performance

In client applications, Precisely recommends you read in your data in small batches and
submit multiple transactions, rather than submitting your entire address database for
processing at once.

AddressBroker Reference Manual for Windows 72

With a little experimentation, you can set benchmarks and optimize performance. Adjust the
number of records per processing transaction depending upon the your record size, your
system capabilities, and the performance results. For optimal performance in a client/server
application, Precisely suggests you start with approximately 100 records per processing
transaction. (Client requests are limited to 16 MB of data, or roughly 100-250K records
depending on what information is being transmitted.)

Initializing a client application
Client objects require initialization. Initialization involves assigning values to a short list of
AddressBroker properties required by all client applications. This can be done
programmatically or via an initialization (.ini) file based on the AddressBroker Interface
Language.

Note: The AddressBroker .NET and Java APIs do not support the use of an initialization
file.

Initializing with an initialization file

AddressBroker C, C++, and ActiveX clients can be initialized with an initialization file. A
client initialization file contains information that controls the execution of the AddressBroker
client and accesses information set on the server. Initialization files are discussed in detail
in Chapter 4 Using Initialization Files.

The example below contains a code fragment for an AddressBroker client object. It shows
the error handling properties and the properties required by client applications.

Typical AddressBroker property settings in a (Windows) client initialization
file

STATUS_LOG = "C:\Program Files\Centrus\Log\status.log"
STATUS_LEVEL = DEBUG
INIT_LIST = GEOSTAN | GEOSTAN_Z9 | COUNTIES
INPUT_FIELD_LIST = FirmName | AddressLine | \
AddressLine2 | LastLine
OUTPUT_FIELD_LIST = FirmName | City | State |ZIP

Initializing programmatically

Client applications can also be initialized programmatically. To learn more about initializing
a client object programmatically see the entries for SetProperty and ValidateProperties in
the appropriate API section of this manual.

For examples showing how to initialize an AddressBroker client object programmatically
see the following sections:

• “AddressBroker Java tutorial” on page 101.

AddressBroker Reference Manual for Windows 73

• “.NET API” on page 141.
• “AddressBroker C tutorial” on page 191.
• “C++ API” on page 230.
• “AddressBroker ActiveX tutorial” on page 285.

Configuring clients for use with multiple servers

There is no special initialization on the client side to use multiple servers other than
specifying that there are multiple servers. AddressBroker transparently switches between
servers if a client has a problem establishing communication with its current server.

AddressBroker properties—client applications
For client applications, you need not set any AddressBroker properties; all can be set on the
server (see “AddressBroker properties in server applications” on page 63). However,
Precisely recommends at minimum that you set the following AddressBroker initialization
properties that govern the list of logical names and input/output field names your application
uses:
• INIT_LIST

• INPUT_FIELD_LIST

• OUTPUT_FIELD_LIST

Precisely also recommends setting the error reporting properties. Error reporting on the
client is independent of error reporting on the server. After the basic properties are set, you
can run your application using the default values for other AddressBroker properties, or
configure them to better suit your processing requirements.

In all of the AddressBroker APIs, you can initialize AddressBroker client objects
programmatically. In the C/C++ APIs and the ActiveX interface, you can also use an
initialization file based on the AddressBroker Interface Language. The AddressBroker .NET
and Java APIs do not support the use of an initialization file.

AddressBroker properties are referenced either by their character string property names—
”MIXED CASE”—or by property IDs—AB_MIXED_CASE. Using Property IDs yields slightly faster
performance, and permits error checking at compile time.

Managing AddressBroker properties

AddressBroker properties share many common features. They can all be set using the
SetProperty function. Use GetProperty to obtain current property values. Use
GetPropertyAttribute to retrieve general property information, such as size and type.

AddressBroker Reference Manual for Windows 74

Assigning values to process control properties

You can assign process control properties as follows:

• In an application using API function calls. You can make repeated calls to
SetProperty throughout your client application as needed.

• In the ActiveX interface, with AddressBroker ActiveX properties.
AddressBroker’s ActiveX interface includes properties that have a 1:1 correspondence
with AddressBroker’s properties.

Verifying properties

After properties have been assigned, they should be validated. Use ValidateProperties to
ensure that a complete set of legal property settings is available to AddressBroker.
ValidateProperties should be called successfully after you are finished setting properties
and before you begin entering input records and field values or record processing begins.

Making a property assignment is only the first step in a two-step process. Many properties
depend on the values of other AddressBroker properties. For example, ALL_OUTPUT_FIELDS,
which holds a list of all available output fields, depends on the INIT_LIST property, among
others. The ALL_OUTPUT_FIELDS property contains an unpredictable value until you have
validated the properties it depends on.

It may not be possible to validate all properties in a single function call. In an interactive
application, for example, you may want to let the user select some of the properties
dynamically. Based on the user’s selection, you may subsequently set other properties and
then revalidate all properties. In this scenario, initial calls to the validate properties function
returns FALSE. This does not mean that an error has occurred. It means that
AddressBroker requires more information.

If all the information required to set AddressBroker’s properties is not available, you can use
iterative calls to the validate properties function to set properties incrementally. Each call
validates some properties, making additional information available to you. Use the
information from each call to set additional properties until all AddressBroker properties
have been set and validated.

Follow these guidelines:

1. Use the get property functions to retrieve the value of the LOGICAL_NAMES (read-only)
property.

2. In client applications, the LOGICAL_NAMES (read-only) property is available as soon as
you create an AddressBroker client object. This is because the *_PATHS properties are
set and validated on the server.

3. Use the information from the LOGICAL_NAMES (read-only) property to set and validate the
INIT_LIST property.

AddressBroker Reference Manual for Windows 75

4. Set and validate the INPUT_MODE property.

5. Now you can call the get property functions to retrieve the values in the
ALL_INPUT_FIELDS and ALL_OUTPUT_FIELDS properties. These properties hold all of the
input and output field names available to your application.

6. Use the information from the ALL_INPUT_FIELDS and ALL_OUTPUT_FIELDS (read-only)
properties to set and validate the INPUT_FIELD_LIST and OUTPUT_FIELD_LIST properties.
These properties are assigned the fields your application actually uses. Field names
must be a subset of the names found in the ALL_INPUT_FIELDS and ALL_OUTPUT_FIELDS
properties, respectively.

7. Next, get general information about the input and output fields your application uses by
calling the get field attribute functions. Use this information to set and validate all
remaining AddressBroker properties.

After all AddressBroker properties have been successfully validated, all of AddressBroker’s
methods become available.

Getting information about properties

You can retrieve information about individual AddressBroker properties including default
settings or current value.

The GetProperty function returns the current value of the AddressBroker property given as
its argument.

The GetPropertyAttribute function returns information about the AddressBroker property
given as its argument. For example, you can use this function to determine a property’s type
(such as read-only) or its default value.

Error handling properties

While you are not required to set these properties, Precisely recommends setting
AddressBroker’s status reporting properties—STATUS_LOG and STATUS_LEVEL, or
THROW_LEVEL.

These properties do not require validation to be used or changed, and should be set first to
ensure that no status messages are lost. AddressBroker supports error reporting for all
application types; however, the implementation varies by language. See the section titled
“Errors, Messages, and Status Logs” in the relevant API chapter in Section 3 of this manual
for language-specific details on this topic.

Note: A client cannot override error handling AddressBroker properties when they are set
on the server.

AddressBroker Reference Manual for Windows 76

Required AddressBroker initialization properties

Precisely requires that you set the initialization properties listed below on the client to
specify the subset of all available geo-demographic data, input fields, and output fields that
your application uses. When set on the client, these properties override default values set
on the server.

INIT_LIST—Delimited list of logical names you are using.

INPUT_FIELD_LIST—List of field names to use from your input records. The field names
allowed depend on the INPUT_MODE you are using.

OUTPUT_FIELD_LIST—List of fully specified field names that you retrieve from your output
records. Available outputs depend on the modules included with your Precisely license.

Field list properties

The following code fragment shows how to set AddressBroker’s field list properties
programmatically. These properties may also be set in an initialization file.

Specifying input and output field lists in a C++ application
 //constructor
QMSAddressBroker *ab = QMSAddressBroker::CreateClient (
“primary:1234 | secondary:1235”, “socket”, “MyLogon”, “MyPassword”,
“MyInitFile”) ;
 ...
// input fields are Firmname, AddressLine, Lastline

ab->SetProperty ("INPUT_FIELD_LIST", "FirmName | AddressLine | LastLine"
);

// output field names are Firmname, AddressLine, City, State, ZIP

Other recommended properties

Precisely also recommends that you set the following properties:

• MATCH_MODE—Controls the “closeness” of the matched records. Set MATCH_MODE to
AB_MODE_CLOSE for best results. See “Pre-defined property values” on page 354 for
more information.

• KEEP_MULTIMATCH—Specifies whether a single match or multiple matches are returned.
The RecordID input and output fields help correlate input records with their
corresponding output record(s).

• KEEP_COUNTS—Specifies whether match criteria counts are kept. To keep counts, set
KEEP_MULTIMATCH to false and KEEP_COUNTS to true. Keeping counts increases processing
time.

AddressBroker Reference Manual for Windows 77

Logical names—client applications
AddressBroker uses logical names to abstract the details of AddressBroker’s reference
data file names and locations. The following sections discuss using logical names in a client
application. For overview information about logical names, see “Logical names” on
page 62.

Logical names and the LOGICAL_NAMES property

If your application is a client, the first thing it needs to know is the list of valid logical names
defined on the server. AddressBroker’s read-only LOGICAL_NAMES property contains a list of
logical names available to your application. Any references your application makes to
logical names must match the names found in this list. Use a GetProperty function call with
the LOGICAL_NAMES property as its argument to retrieve the list. An example using
GetProperty is shown below. Each logical name returned is coded for the following types:

• C for GeoStan Canada
• D for Demographics
• G for GeoStan
• S for Spatial
• Y for GDL Z5 (zip5.gsb)
• Z for GeoStan Z9

Retrieving a list of logical names using the LOGICAL_NAMES property
(C++ example)

// assume the path assignments from the figure above
 :
ab.GetProperty ("LOGICAL_NAMES", buffer, buffersize);
printf ("%s", buffer);
//printf output would look like this:
GEOSTAN:G \tGDT:G \GEOSTAN_Z9:Z \tGDT_Z9:Z \tGEOSTAN_C:C \tCENSUS2K:D
\tCOUNTIES:S \tSTATES:S \tSTATES2:S

Logical names and the INIT_LIST property

AddressBroker’s INIT_LIST property sets the list of logical names (and therefore the data)
that an application can access. Assigning logical names to data in the path properties is not
enough; you must use the INIT_LIST property to define the data sources your application
accesses.

The following example assumes the property settings shown in the example in “Logical
names and the LOGICAL_NAMES property” on page 77. The logical names are shown in
bold.

AddressBroker Reference Manual for Windows 78

Note: Precisely only assigns a subset of the logical names to the INIT_LIST property. As a
consequence, the application can access Precisely Enhanced data, but not GDT
data. It can also access two spatial data files, but no demographic data.

Assigning logical names to the INIT_LIST property in a Java client
 :
ab = QMSAddressBrokerFactory.make(host + ":" + Integer.toString(port),
"SOCKET", MyLogon, MyPassword);
 :
ab.setProperty("INIT_LIST", "GEOSTAN | GEOSTAN_Z9 | COUNTIES | STATES |
GEOSTAN_C | STATES2");
 :

AddressBroker Reference Manual for Windows 79

Input/Output fields
AddressBroker processes each address record as a collection of fields. Fields identify the
specific input and output data associated with an input address record.

Single and multi-valued fields

AddressBroker has two field types: single-valued and multi-valued. Single-valued fields, as
the name implies, contain a single value. Examples of single valued fields include
AddressLine and City. To retrieve values from single-valued fields, call the GetField
method.

Depending on the API language you are using, there may be more than one syntax allowed
for referencing logical names in GetField.

To determine if a field requires a logical name, use GetFieldAttribute with
AB_FIELD_NEEDS_LOGICAL_NAME as its argument. The value returned in this property also
indicates the data type of the required logical name (for example, GeoStan or Spatial+™).

Multi-valued fields, as the name implies, contain multiple values. Some AddressBroker
spatial output fields may contain multiple values. To retrieve values from multi-valued fields,
use repeated calls to GetField, such as in a while loop.

For example, in a hypothetical spatial query you would use OurSalesTerritory.gsb to
determine the sales territory an address falls within. There is some overlap in these sales
territories, consequently it is possible that a given address lies within more than one sales
territory (polygon). The names of all the polygons the address falls within (or near) can be
retrieved from the multi-valued field PolygonName.

Precisely may also get multiple values when doing a closest site spatial query. In this type
of query, you want to identify the closest point(s) to an address. In this hypothetical spatial
query, use OurStoreLocations.gsb, and set AddressBroker properties to return the five
closest sites. The names of these sites (points) can be retrieved from the multi-valued field
ClosestSiteName.

See the GetField method description in each API chapter in this document for code
fragments showing how to retrieve values from multi-valued fields.

Managing fields

AddressBroker fields share many common features. They can all be set using the SetField
function. Retrieve general information about fields using the GetFieldAttribute function.
Retrieve current field values using the GetField function.

AddressBroker Reference Manual for Windows 80

The SetField function sets the value of an input field in the current input record. This data is
used as input for processing (validation, standardization, and enhancement).

The GetField function gets the value (or values if the field is multi-valued) of an output field
from the current output record.

Use ResetField to reset the pointer to the first value in multi-valued output fields in the
current output record.

Use the GetFieldAttribute function to query information about an input or output field,
such as its type, width, and number of decimal places.

Guidelines for using fields

Use the following guidelines when defining fields:

• Specify your data—Before processing your address records, specify only those fields
your application uses. The field names that are available to your application depend on
the values set in AddressBroker’s INIT_LIST and INPUT_MODE properties. Be sure to
confirm these properties with ValidateProperties.

• Get the lists of available fields—After AddressBroker knows which reference files it
can access, it can provide lists of all the valid input and output fields that are compatible
with its data sources. You can retrieve these lists using GetProperty with
ALL_INPUT_FIELDS or ALL_OUTPUT_FIELDS as its argument.

• Select the input fields to use—After you have the available fields list, select the fields
that your application uses and assign AddressBroker’s INPUT_FIELD_LIST property,
specifying the list of input field names to be set in each AddressBroker record.

• To optimize processing, specify only those fields you want processed and returned,
even if your input address records contain additional address information.

• Many input records can be standardized even if they do not include information for
every field in INPUT_FIELD_LIST.

• Select the output fields to use—The OUTPUT_FIELD_LIST property specifies the list of
output fields returned upon completion of processing.

ab->SetProperty ("OUTPUT_FIELD_LIST" FirmName | AddressLine | City |
State | ZIP);

6 – Server

In this chapter

Installing AddressBroker 82
Backward compatibility 82
Windows server administration 82
UNIX server administration 86
Using multiple servers 90

AddressBroker Reference Manual for Windows 82

This chapter discusses the initial steps necessary to get your AddressBroker server up and
running. First, this chapter discusses issues specific to running AddressBroker server on
Windows and discusses issues specific to running AddressBroker server on UNIX
platforms. The remainder of the chapter discusses issues common to running the server on
all platforms, including sections on the AddressBroker properties the server requires and
error reporting for AddressBroker server.

Installing AddressBroker
You can install the AddressBroker server on the platforms listed in Chapter 3 System
Requirements.

In addition to installing the executables, you may also need to install geo-demographic data
files. For instructions on installing AddressBroker, please refer to the installation notes.
AddressBroker classes are shipped as a Java JAR file and several Windows DLLs. UNIX
classes are shipped as static or dynamic libraries.

Backward compatibility
AddressBroker versions 1.5 and later are not backward compatible with versions previous
to 1.5. However, starting with AddressBroker version 1.5, all AddressBroker version 1.5 or
later clients are operational with all AddressBroker servers at the same version number or
higher.

Windows server administration
The following sections discuss installing, starting, and troubleshooting the AddressBroker
server, and accessing remote data.

AddressBroker Service Manager

Use AddressBroker Service Manager (ABSM) to install and make registry entries for the
AddressBroker Service after you install AddressBroker. You can also edit server
initialization files using the ABSM. You do not need to set any registry parameters to run the
ABSM.

Step 1: Using ABSM to install the AddressBroker service

Note: If the service is already installed, proceed to step 2, below.

1. To start ABSM, select the Windows Start menu and select Programs --> AddressBroker
--> AddressBroker.

AddressBroker Reference Manual for Windows 83

The first time you open the ABSM, the AddressBroker Service Manager dialog box
appears.

Default settings are provided for all of the fields except the initialization file. The
stoplight shows red indicating the service is not fully configured. Throughout the
installation and configuration steps, click the stoplight button for help as needed.

2. Click Install to register the AddressBroker server as an NT service.

After selecting Install, the button changes to Start. To unregister a service, click the
Remove button. The AddressBroker Service unregisters from the set of NT services,
however, no files are removed from your system.

After installing the service, the stoplight turns yellow, indicating you may now start the
service.

Step 2: Indicating the server initialization file

Before running the AddressBroker Service, indicate a server .ini file. For information about
creating .ini files, see “Using Initialization Files” on page 58

• In the Initialization File field, type the path and file name of the server .ini file. Click
Browse to navigate to the file.

• To edit the .ini file, click Edit File to open the .ini file in a text editor.

AddressBroker Reference Manual for Windows 84

Step 3: Defining the registry settings

To define the registry settings, select the Configuration tab and provide the following
information:

Field Name Description

Port The port number to run the service. Precisely suggests setting the
port to a number between 4000 and 5000.

Number of Handles The number of handles the server will create for processing.
The server is a multi-threaded application. There is one thread per
handle. You can run multiple requests simultaneously by running
multiple handles. Each handle requires approximately 15 MB of
memory (average). If your processing requests include both large
and small numbers of address records, increasing the number of
AddressBroker instance handles allows the smaller transactions to
be processed more quickly. Precisely recommends using 2 to 3
handles per processor for light to normal loads, 5 to 10 handles for
heavy processing. Use more handles as system resources or
processing requirements merit.

License File When AddressBroker’s server component was installed, the license
file was copied to a local directory. Specify the path to the license
file which is typically copied to a local directory when
AddressBroker’s server component is installed.

License Key The license key (that is, password) provided with your license file.

AddressBroker Reference Manual for Windows 85

Step 4: Verifying data paths

Select the Paths tab and verify the path to your GeoStan and GeoStan Z9 data sets. You
may edit the paths directly here, or from the Edit File ... button on the Advanced tab.

Note: If you are supporting more than one GEOSTAN or GEOSTAN_Z9 path from the
AddressBroker server, you must edit them from the Edit File... button on the
Advanced tab.

Step 5: starting the service

Return to the Status tab and click Start to start the AddressBroker Service.

If the Service starts correctly, the stoplight turns green. When the Service is running, the
Start Service button becomes Restart, and the Remove button becomes Stop. Selecting
this button stops the AddressBroker server.

To query the status of the service, press the Stop Light button. A message displays with
information about your AddressBroker Service.

Troubleshooting AddressBroker server

The first step in debugging the AddressBroker server is to check your log file. The log file
records error information as reported by the server. The name of the log file is specified in
the server .ini file you provided to ABSM. If you did not specify a log file in your .ini file, edit
the file to include lines that look something like this:

STATUS LOG = YourFullPathTo\Server.log

STATUS LEVEL = SERVER

AddressBroker Reference Manual for Windows 86

Note: AddressBroker automatically rolls over the log file at 2GB.

A common problem preventing the AddressBroker server from starting is that access
permissions to necessary geo-demographic data are not set correctly.

AddressBroker also includes a command line interface, called abserver, to assist you in
debugging the AddressBroker server. If you get an error message when you try to run the
AddressBroker Service, follow these steps:

1. From the AddressBroker Service Manager window, verify that you have filled in the
required fields for the registry—port number, Number of Handles, Maximum
Concurrent Connections, and the full path and filename of your AddressBroker server
initialization file. The command line interface does not execute properly unless
these registry values have been entered and the service has been installed.

2. From the Start menu, select Programs and open a Command Prompt (DOS) window.

3. In the DOS window, navigate to the directory that contains abserver.exe. A standard
installation puts this file on your local drive in:
..\Program Files \Centrus\AddressBroker\bin directory.

4. abserver runs as a console application, not as an NT service. Error messages are
printed to the screen. Use Ctrl-C to terminate the application.

5. From the command line prompt, type:

abserver -debug

A list of one or more status codes and messages displays on the screen. Use this
information to debug the AddressBroker server. A typical status message is that the
initialization file was not found. Check the path specified and attempt to restart the server.
Debug mode does not execute properly unless the service has been installed and the
registry entries have been made.

The type of status messages abserver reports depends on the value assigned to
AddressBroker’s STATUS_LEVEL property. DEBUG causes all errors and warnings to be
reported. The default value—SERVER—causes only critical errors to be reported.

If you received an error running the server through AddressBroker Service Manager, but
running abserver -debug works error free, you may have not have your network or file
permissions set correctly.

UNIX server administration
AddressBroker uses dynamically linked libraries. You need to set your PATH variable to
include the AddressBroker lib directory. Depending on the operating system and the shell
you are running, the assignment statement looks similar to the following example:

SHLIB_PATH = $SHLIB_PATH: /YourFullPathToAddressBroker/libs
LD_LIBRARY_PATH = $LD_LIBRARY_PATH: /YourFullPathToAddressBroker/libs

AddressBroker Reference Manual for Windows 87

You can set this variable on the command line or in your profile—or the equivalent—file.

The abserver command

To run the AddressBroker server on a UNIX platform, use the abserver.rc script command:
ksh abserver.rc start

Accessing remote data on UNIX platforms

The user running the abserver process may encounter NFS permission difficulties when
AddressBroker geo-demographic data is mounted remotely. Ensure that the owner of the
server process has read permissions to the files that AddressBroker accesses remotely. If
abserver does not execute properly, check your file permissions.

Starting the abserver at boot time

To start the abserver at boot time, include a script in your /init.d directory. For example:

1. Copy the abserver.rc script from the Samples subdirectory to
/sbin/init.d/abserver.

2. Edit the script to set the full paths to abserver.ini and the abserver executable.
These are shown in bold in <Hypertext>“abserver.rc sample file.” You may also want to
edit the PORT, NHANDLES, and MAXCONN values.

3. Create a symbolic link from /sbin/rc2.d/S900abserver to
/sbin/init.d/abserver.

4. Create a symbolic link from /sbin/rc1.d/K900abserver to
/sbin/init.d/abserver.

Assign a number such that the abserver script starts after any required support services (for
example, NFS or TCP/IP) have already started. The number in the .rc scripts (for example,
900) must not conflict with any existing script number. The following section shows an
example start up script.

AddressBroker Reference Manual for Windows 88

abserver.rc sample file
#!/bin/sh
########## CONFIGURATION PARAMETERS ##########
PORT=1234
FILE=/YourFullPathTo/abserver.ini
NHANDLES=6
MAXCONN=20
PATH=/sbin:/usr/sbin:$PATH
export PATH
start-up script exit codes
OKAY=0
ERROR=1
########## main ##########
case $1 in
 start_msg)
 print "Start Centrus AddressBroker daemon"
 exit $OKAY
 ;;
 stop_msg)
 print "Stop Centrus AddressBroker daemon"
 exit $OKAY
 ;;
 stop)
 abserver -shutdown
 exit $OKAY
 ;;
 start)
 ;; # fall through
 *)
 print "USAGE: $0 {start_msg | stop_msg | start | stop}" >&2
 exit $ERROR
 ;;
 esac
########## start ##########
YourFullPathTo/abserver $PORT $FILE $NHANDLES $MAXCONN
exit $?

AddressBroker Reference Manual for Windows 89

System resources and AddressBroker UNIX servers

When running an AddressBroker server, be aware of the Interprocess Communication
(IPC) resources, (message queues) being used. If you interrupt the process, the server
crashes, or you fail to call the appropriate termination method, you may inadvertently
continue to consume system resources. To check from the command line call:

ipcs

which produces output like:
IPC status from /dev/kmem as of Tue Oct 6 10:04:14 1998
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x3c180475 -Rrw--w--w- root root
q 1 0x3e180475 --rw-r--r-- root root
q 52 0x00000000 --rw------- UserID qms
q 53 0x00000000 --rw------- UserID qms
Shared Memory:
m 0 0x2f140002 --rw------- root sys
m 1 0x411802e2 --rw-rw-rw- root root
...

The lines with your user name listed as owner may include AddressBroker system
resources. To remove them manually, use:

ipcrm -q <number>

where <number> is the ID. To clean up the example above, issue this command:
ipcrm -q 52 -q 53

You need to specify the -q for each ID ("ipcrm -q 52 53" is incorrect).

A simple shell script can automate this process for you. For example:
#! /bin/csh
set id= ‘whoami‘
set queues= ‘ipcs -q | grep $id | awk ‘{print $2}’‘
foreach q ($queues)
-ipcrm -q $q
end
ipcs -q

Troubleshooting the AddressBroker server

The first step in debugging the AddressBroker server is to check your log file. The log file
records error information as the server reports. The name of the log file is specified in the
initialization file you provided to abserver. If you did not specify a log file in your initialization
file, edit the file to include lines similar to the following:

STATUS LOG = YourFullPathTo/Server.log

AddressBroker Reference Manual for Windows 90

STATUS LEVEL = DEBUG

A common problem preventing the AddressBroker server from starting is that access
permissions to necessary geo-demographic data are not set correctly.

Usage statement for abserver in debug mode
Usage: abserver [-debug] [-t tmpdir] port inifile [nHandles [maxConn]]
 abserver -shutdown
 -debug Run with debug output to the console,otherwise
 run in the background (as a UNIX style daemon).
 -t tmpdir Specifies the scratch directory. if the -t flag is not
 specified on the command line, the $TMPDIR ENV variable
 is used. If $TMPDIR is unspecified, /tmp is used as the
 default. Default = /tmp
 port The decimal port number. Required parameter.
 inifile The AddressBroker default file. Required parameter.
 nHandles Number of AddressBroker instances to create.
 Default = 6.
 maxConn Maximum number of outstanding open connections
 attached to the service. These are open to a client
 but not necessarily currently running a command.
 Default = 20.
 -shutdown Halts the abserver. In multi-server situations, the
 -shutdown parameter halts the last abserver started.

The abserver keeps track of the last server started. Calling abserver with the -shutdown
parameter halts the last server started. The user calling:

abserver -shutdown must have the appropriate permissions to kill the abserver process.

When running multiple servers, identify the process IDs and terminate all related processes
using the UNIX ps and kill commands.

Using multiple servers
AddressBroker supports the use of up to one hundred servers for any individual client.
Multiple server support ensures continuous support for your client applications.
AddressBroker transparently switches between servers if a client has a problem
establishing communication with its current server. An AddressBroker client uses its primary
server until that server fails, at which point it switches over to a secondary server. It
continues to use this secondary server until it—the secondary server—fails. After a failed
server is operational, it again becomes available to the client.

To ensure all client requests are serviced identically, make certain that the server
initialization file on each host uses the same initialization settings. For more information
about configuring AddressBroker for use with multiple servers, see the following sections:

• Java “make” on page 110.
• .NET “Make” on page 159.

AddressBroker Reference Manual for Windows 91

• C “QABInit” on page 196.
• C++ “createClient” on page 238.
• ActiveX “InitializeX” on page 294.

7 – Batch Application

In this chapter

Formatting your input files 93
Creating the configuration file 93
Starting the batch application 98

AddressBroker Reference Manual for Windows 93

The AddressBroker batch application provides geographic standardization, spatial analysis,
and geographic determination in one simple application. Using the batch application, you
can input a fixed width or delimited file and customize your output through a configuration
file.

This chapter contains information on using the AddressBroker batch application, including:

• Formatting your input files
• Creating the configuration file
• Starting the batch application

Formatting your input files
You can format your input files using the Centrus Data Formatter utility. Input field names
must correspond to valid AddressBroker input fields found in “Tables of input fields” on
page 392. For information on the Centrus Data Formatter utility, see the GeoStan
Geocoding Suite Utilities Reference Manual.

The input file must have an associated format file (.fmt) of the same name. You can
generate the format file using the Centrus Data Formatter utility.

The following is an example input file.
//
//File Type
//
TYPE=Fixed
EOL=None

//
//Table Schema
//
AddressLine Character 60
Lastline Character 60
junk Character 47
Longitude Character 10
spacer Character 1
Latitude Character 10
therest Character1 95

Creating the configuration file
To use the AddressBroker batch application, you need a configuration file (.ini). If you do not
specify a configuration file, the application uses the abbatch.ini file in the working
directory.

AddressBroker Reference Manual for Windows 94

Configuration parameters

The following are configuration parameters you can include in your configuration file.

Parameter Description

ADDR_POINT_INTERP Address point interpolation uses a patented process that improves upon
regular street segment interpolation by inserting point data into the
interpolation process.
TRUE = Sets find property GS_FIND_ADDR_POINT_INTERP to true in
geostan.
FALSE = Turns this option off.

ALTERNATE_LOOKUP To enable firm name matching:
1 = Matches to the address line, if a match is not made, then GeoStan matches
to the Firm name line.
2 = Matches to the Firm name line, if a match is not made, then GeoStan
matches to address line.
3 = (Default) Matches to the address line.

ALWAYS_FIND_CANDIDATES Enables AddressBroker to keep multiple candidate records when matching
with point-level data for use with centerline matching.
Used to return multiple candidate records when street locator matching is
enabled. Additional information can be obtained about matching street
segments for both a single or multiple match.
Not valid when using the reverse geocoding options.
TRUE = Keep candidates
FALSE = (Default) Do not keep candidates

APN_DATA Specifies whether Centrus APN data should be loaded.
TRUE – Centrus APN data returns available
FALSE – Centrus APN data returns not available
If you do not set the value, the application uses the server value.

APPROX_PBKEY When using the Master Location Dataset (MLD), when a match is not made to
an MLD record, this feature returns the pbKey of the nearest MLD point
location.
The search distance ("RevGeoSearchDistance") for the nearest MLD point
location can be configured to 0-5280 feet. The default is 150 feet.
This type of match returns a pbKey with a leading ‘X’ rather than a ‘P’, for
example, X00001XSF1IF.
For more information, see “PreciselyID Fallback” on page 20.
TRUE – Enables PBKey Fallback.
FALSE – (Default) Disables PBKey Fallback.

BATCH_SIZE Number of records for the application to process in a single request to the
AddressBroker server.
Default = 100; must be 1 or greater.

BUFFER_RADIUS Spatial buffer in feet; radius or width.
If you do not set the value of the buffer, the application uses the server value
set using the AddressBroker property BUFFER_RADIUS.

CENTERLINE_OFFSET Distance, in feet, to offset the centerline geocode from the street centerline
toward the parcel centroid. Default is 0 feet, which returns the street centerline
geocode. Any value which takes the geocode past the parcel centroid will
return the parcel centroid.Range = 0 - 5280.

AddressBroker Reference Manual for Windows 95

CLOSEST_POINT Specifies whether matching should be done to the closest feature or point
address.
TRUE – Matches to the closest point address within the search radius.
FALSE – (default) Matches to the closest feature including street segments
and intersections in addition to address points.

NOTE: This feature requires that at least one points data set and one streets
data set are loaded; otherwise, the match will be made to the closest feature.

DELIMITED_FILE_QUALIFIER Field qualifier for output file types of DELIMITED. The qualifier is commonly
used for delimited files when the actual delimiter character is contained in the
delimited field. The possible values are DOUBLEQUOTE (default),
SINGLEQUOTE, or NONE.

ELEVATION_DATA Specifies whether Centrus Points parcel elevation data should be loaded.
TRUE – Centrus Points parcel elevation data returns available
FALSE – Centrus Points parcel elevation data returns not available
If you do not set the value, the application uses the server value.

FIRST_LETTER_EXPANDED Some business locations are identified by address ranges and can be
geocoded to the interpolated mid-point of the range.
TRUE = Sets find property GS_FIND_ADDRESS_RANGE to true in geostan.
FALSE = Turns this option off.

INIT_LIST List of logical names the application can access at the server.
If you do not specify a list of logical names, the application uses the server
value set using the AddressBroker property INIT_LIST.

INPUT_FILE Input file containing the address or spatial inputs for processing. Requires an
associated format file, of the same name with a .fmt extension, that describes
the input fields and input file format.
You MUST specify an input file or the application terminates.

INPUT_MODE Indicates the valid inputs. Possible values include:
NORMAL – (default) Uses a single field for lastline information when
processing addresses.
PARSED_LASTLINE – Uses multiple fields for lastline information when
processing addresses.
PREDICTIVE_LASTLINE - Uses input fields AddressLine and Latitude and
Longitude. For more information about this feature, see “Using predictive
lastline” on page 33.
REVERSE_APN – Uses input fields of ApnId, CountFips & StateFips for
reverse APN lookup.

NOTE: Reverse APN matching is only available with Centrus Points and
Centrus APN data. This feature is not supported using MLD and MLD
Extended Attributes data.

REVERSE_GEOCODE – Uses input fields Latitude and Longitude for reverse
geocoding.
REVERSE_PBKEY - Uses input field pbKey for Reverse PBKey Lookup. For
more information about this feature, see “Reverse PreciselyID
Lookup” on page 21.
SPATIAL_ONLY - Uses input fields Latitude and Longitude. Performs spatial
lookups only.

INPUT_OUT Appends input record to the beginning of the output record.
Yes – (default) Prepends the input record
No – Does not prepend the input record

Parameter Description

AddressBroker Reference Manual for Windows 96

LOG_FILE Name of the log file.
If you do not specify a log file, the log output is sent to the console.

MATCH_CODE_EXTENDED Specifies whether to return the extended match code (3rd hex digit).
TRUE = Return extended match code
FALSE = Default. Extended match code disabled

MATCH_MODE Sets the leniency used to find a match.
RELAX
CLOSE
EXACT
INTERACTIVE
CASS
CUSTOM

NOTE: The CASS and CUSTOM match modes are not supported in single-
line address matching.

If you do not set the value of the match mode, the application uses the server
value.
For more information on match modes, see “Address match
methodology” on page 12.

MIXED_CASE Determines how the output displays.
TRUE – Mixed case
FALSE – All upper case
If you do not set the value, the application uses the server value.

MUST_MATCH_ADDR_NUM Candidates must match house number exactly.
Usable match modes: Custom
Boolean. Default value = True
When AddressBroker matches an input address, its default behavior is to
match to the address number. This default behavior corresponds to
"MUST_MATCH_ADDR_NUM" set to True.
If "MUST_MATCH_ADDR_NUM" is set to False, then AddressBroker no
longer must match the address number, therefore permitting relaxed address
number matching.
TRUE = Sets find property GS_FIND_MUST_MATCH_ADDRNUM to true in
geostan. FALSE = Turns this option off.

MUST_MATCH_CITY Candidates must main address exactly.
Usable match modes: Custom
Boolean. Default value = FALSE

MUST_MATCH_MAINADDR Candidates must match city.
Usable match modes: Custom
Boolean. Default value = FALSE

MUST_MATCH_STATE Candidates must match state.
Usable match modes: Custom
Boolean. Default value = FALSE

MUST_MATCH_ZIPCODE Candidates must match ZIP code.
Usable match modes: Custom
Boolean. Default value = FALSE

OUTPUT_FILE Output file name.
You MUST specify an output file or the application terminates.

Parameter Description

AddressBroker Reference Manual for Windows 97

Configuring reverse geocoding in batch

To configure reverse geocoding in batch, you will need to install the GSX files and set up
the server.ini file. The server.ini file needs to include the required and desired optional
properties. Optional properties specific to reverse geocoding include
REVGEO_SEARCH_DISTANCE and SQUEEZE_DIST. For more information, see “Using Initialization
Files” on page 58 and “Properties” on page 339. In addition, the INPUT_FIELD_LIST in the
server .ini file needs to specify the input fields Latitude and Longitude.

Your input record needs to contain the longitude and latitude input fields. The input points
can be specified in either decimal format or millionths of decimal degrees (-105.239771 & -
105239771). The format is determined by the server .ini property AB_COORDINATE_TYPE.

 To configure reverse geocoding in batch, set the configuration parameters in the batch .ini
file, as follows:

• Required: To enable reverse geocoding, set: INPUT_MODE=REVERSE_GEOCODE

OUTPUT_FILE_DELIMINATOR Delimiter for output files where the OUTPUT_TYPE is DELIMITED. Valid
values are COMMA (default), SEMICOLON, TAB, SLASH, or OTHER.
If you specify OTHER, you must include the ASCII character after OTHER.

OUTPUT_FLN Indicates if the first line of the output contains field names.
YES – Contains field names
NO – (default) Does not contain field names

OUTPUT_TYPE Type of output.
FIXED (default)
DELIMITED
If you specify FIXED, you must provide a width for the output fields. See
“Output fields” on page 98.

REPORT_FILE Name of the statistical output report, which includes information such as the
location code and match code.
If you do not specify a report file, the application does not collect the statistics.

SERVER Server name and port. The default is localhost:4660.

STREET_CENTROID Specifies whether or not to return a street segment geocode as an automatic
geocoding fallback.
TRUE = Return street segment geocode
FALSE = Default. Street locator disabled

ZIP_PBKEYS Specifies whether PBKey ZIP Centroid Locations data should be loaded.
TRUE – PBKey ZIP Centroid Locations returns available
FALSE – PBKey ZIP Centroid Locations returns not available
If you do not set the value, the application uses the server value.
For more information, see “PreciselyID ZIP Centroid Locations” on
page 17.

Parameter Description

AddressBroker Reference Manual for Windows 98

• Optional: To enable the optional closest point feature, assign: CLOSEST_POINT=TRUE
For more information on this feature, see “Using reverse geocoding to points matching”
on page 26.

Note: The properties set in the batch .ini file override the properties set on the server.

Output fields

You must include a list of output fields and their position in the configuration file. If you do
not specify output fields, the application terminates. Valid outputs include those available for
GeoStan, GeoStan Canada, Spatial+, and Geographic Determination Library found in
“Tables of output fields” on page 399.

Note: Spatial+ and Geographic Determination Library output fields must have an
accompanied logical name given in the specification.

For each field, you must specify a position in the output record, in the format
OutputFieldName[LogicalName]occurence = position.

If the output record type is FIXED (see OUTPUT_TYPE), you must also specify a width. For
example, OutputFieldName[LogicalName]occurence = position, width. The width should fall
within the output field width indicated in “Tables of output fields” on page 399.

Note: Spatial outputs are limited to eight occurrences and you cannot request an
occurrence out of sequence. For example, you cannot select the third return without
specifying the first and second return.

The following is an example of the text in the configuration file for the output fields.
; OUTPUT FIELD LAYOUT - specify the format for each output field, either
position and width (required for FIXED) or just position based on the
OUTPUT_TYPE
; Output Field Name[Logical Name]Occurrence = #, #
; no default
Addressline=1
PolygonName[CA-Rating]1=2

Starting the batch application
You start the batch application via a command line interface. You can specify a
configuration file; If you do not specify a configuration file, then the AddressBroker batch
application uses the abbatch.ini in the working directory.

To run the batch application, at the command line enter:

<path to batch application > <path to configuration file>

For example:
d:\AddressBroker\AbBatchApp\Abbatch.exe <config file>

8 – Java API

In this chapter

Restrictions in the Java API 100
Accessing the AddressBroker Java library 100
AddressBroker Java tutorial 101
AddressBroker Java methods 109
AddressBroker Java exceptions 139

AddressBroker Reference Manual for Windows 100

This chapter describes the Java API to AddressBroker in detail.

This chapter includes a tutorial using the AddressBroker Java API. The tutorial shows you
how to use most of AddressBroker’s functionality, yet is general enough that you can modify
it for other uses. A complete method reference follows the tutorial. The final section of this
chapter discusses error handling.

The naming convention for AddressBroker Java API methods is methodName.

Restrictions in the Java API
Due to restrictions imposed by Java, the AddressBroker Java API has the following
restrictions:

• Using initialization files is not supported.
• Using log files is not supported.
• Using THROW_LEVEL is not supported.

Accessing the AddressBroker Java library
To use the AddressBroker Java API, you must have Java software on your client machine.
To install Java, follow these steps:

1. Install the Java Developer’s Kit (JDK) 1.7, or later, or the Java Runtime Environment
(JRE).

2. Add the ABclient.jar file to the CLASSPATH on your client machine. To update your
CLASSPATH:

On UNIX platforms, modify your CLASSPATH environment variable to include the path to
the location of the .jar file. Depending on the shell you are running, the statements you
need look similar to the following:

CLASSPATH = $CLASSPATH: /<YourFullPathTo>/ABclient.jar
export CLASSPATH

Adding a .jar file to your (Windows) CLASSPATH

CLASSPATH = %JDK_HOME%\lib\classes.zip;
C:\Centrus\AddressBroker\Win32\lib\ABclient.jar;...

To use the AddressBroker client library .jar file, you must import the appropriate classes in
your application source code files:

import java.io.*;
import java.net.*;
import qms.addressbroker.client.*;

AddressBroker Reference Manual for Windows 101

You must also use the appropriate factory function call for creating an AddressBroker
instance:

ab = QMSAddressBrokerFactory.make ("myhost:4660",
"SOCKET", MyLogon, MyPassword);

AddressBroker Java tutorial
This section describes the steps necessary to develop a Java client application using the
AddressBroker Java API. The example shows basic Java sample code that performs
address record enhancement. It uses the firm name and address fields from the address
records as input. This example standardizes the address data and augments it with city,
state, and 9-digit ZIP Code information from the GeoStan Enhanced data directory.

Sample Java code (Console.java) is located in the Samples subdirectory.

Step 1: Create and initialize the client object

Java uses package import statements to allow class references without having to specify
the fully qualified class name. Instead of using qms.addressbroker.client.AddressBroker, this
tutorial uses QMSAddressBroker.

QMSAddressBroker is an interface definition and not a class. You cannot create a concrete
QMSAddressBroker instance. Use the QMSAddressBrokerFactory helper class to create an
instance for you.

Java initialization example
import java.io.*;
import java.net.*;
import qms.addressbroker.client.*; // Use this to import classes

public class Simpleconsole
{
 public static QMSAddressBroker setupAB() // a sample startup
function
 {
 QMSAddressBroker ab = null;

 // Specify the machine name where the server is running
 // (list should be host:port|host:port)
 // We assume that the server is running on port 4660 (0x1234)
 // You may need to change the host:port pair to match
 // Assume the server runs on the local machine
 String list = "localhost:4660";

 // Specify what transport protocol to use.
 // "SOCKET"
 String transport = "SOCKET";

 try

AddressBroker Reference Manual for Windows 102

 {
 // Create AddressBroker object
 // Set username/password if accounting has been implemented.
 ab = QMSAddressBrokerFactory.make(list, transport, null, null);
 }
 catch (IllegalArgumentException illArg)
 {
 System.out.println("Unsupported protocol: " + transport);
 illArg.printStackTrace();
 return null;
 }
 catch (InstantiationException inst)
 {
 System.out.println("Could not create AddressBroker instance!");
 inst.printStackTrace();
 return null;
 }

Production code example
Production Version of an AddressBroker Java Client processing:
 QMSAddressBroker ab = QMSAddressBrokerFactory.make(hostname,
"NOCONNECT", null, null);
 // Set the essential client side properties
 try {
 // Tell AddressBroker what logical Names we are planning on using
 // Here we are using a generic logical name for GeoStan.
 // Add others to the pipe-delimited list for other processing.
 ab.setProperty("INITLIST",
"GEOSTAN|GEOSTAN_Z9|GEOSTAN_Z5|GDTZIP5|COUNTIES|SOILS|PLACE|MUNI");
 // The following line would add a Polygon file with the
 // logical name "Counties"
 //ab.setProperty("INITLIST", "GEOSTAN|GEOSTAN_Z9|Counties");

 // Here we tell AddressBroker what information is going to be
 // provided. The INPUT_MODE property defines a set of Input
 // Fields that are allowed. The INPUT_FIELD_LIST property
 // defines the subset of those fields that are actually used.
 // Here we are providing the a rather minimal address
 ab.setProperty("INPUTMODE", QMSABConst.AB_INPUT_NORMAL);
 ab.setProperty("INPUTFIELDLIST", "firmname|addressline|lastline");

 // This is list of the information we expect about the records
 // we are enhancing. For our example, we get GeoStan
 // information. If you have added more logical names to the
 // INIT_LIST property, then you need to also add corresponding
 // output fields to this list to define the values you want
 // returned.
 ab.setProperty("OUTPUTFIELDLIST",
 "firmname|addressline|city|state|zip10|MatchCode"
 + "|Longitude|Latitude|Location Quality Code"
 +
"|PolygonName[GDTZIP5]|PolygonName[COUNTIES]|PolygonName[SOILS]"
 +
"|GDLPolygonName[GDTZIP5]|GDLPolygonName[COUNTIES]|GDLPolygonName[SOILS
]"
 +
"|PolygonOverlap[GDTZIP5]|PolygonOverlap[COUNTIES]|PolygonOverlap[SOILS
]"
 + "|PolygonOverlap[MUNI]|PolygonOverlap[PLACE]"

AddressBroker Reference Manual for Windows 103

 + "|GDLPolygonName[MUNI]|GDLPolygonName[PLACE]"
 +
"|MUID2[SOILS]|PolygonStatus[SOILS]|ConfidenceSurfaceType[SOILS]”

);
 // The following line would add polygon name and status returns for
the
 // Counties layer above.
 // ab.setProperty("OUTPUTFIELDLIST",
 // "firmname|addressline|city|state|zip10|MatchCode"
 // + "|Longitude|Latitude|Location Quality Code" //
GeoStan
 // + "|PolygonName[Counties]|PolygonStatus[Counties]"); //
Spatial

 // Set properties that affect the behavior of the server

 // Only want single output record for each input record...
 ab.setProperty("Keep_multimatch", false);
 // Return geocodes in decimal degrees (instead of an integer
 // representing millionths of a degree)
 ab.setProperty("Coordinate Type", QMSABConst.AB_COORD_FLOAT);

 } catch (IllegalArgumentException illArg) {
 // Any of the following occurred:
 // * Attempt to set a non-existent property
 // * Data type mismatch (E.g. set a string property to
 // an Integer value)
 // * value was null
 illArg.printStackTrace();
 return null;
 }

 // Now we go to the server and make sure everything is valid
 // We have successfully initialized our instance.
 return ab;
 }

 // build a few records for enhancement
 private static void fillRecords(QMSAddressBroker ab)
 throws IllegalArgumentException, AddressBrokerException
 {
 // Fill in a record...
 // a setField call with a bad field name (setField("xxx", ...))
 // or trying to set it to a null value (setField(...,null))
 // will result in an IllegalArgumentException being thrown
 ab.setField("firmname", "Group1 Software");
 ab.setField("addressline", "4750 Walnut #200");
 ab.setField("lastline", "Boulder, CO");
 // setRecord can throw an AddressBrokerException - but only if
 // setField is never called. Obviously not a problem here...
 ab.setRecord();
 // Fill in a second record...
 ab.setField("firmname", "White House");
 ab.setField("addressline", "1600 Pennsylvania");
 ab.setField("lastline", "Washington, DC");
 ab.setRecord();
 }

 private static void myProcessRecords(QMSAddressBroker ab)
 throws IOException, AddressBrokerException

AddressBroker Reference Manual for Windows 104

 {
 ab.processRecords(); // Send it to the server...
 // For each record that comes back...
 String sSoilName;
 String sSoilName2;
 while (ab.getRecord()) {
 // appropriate processing of record here.
 // Print out the basic address
 System.out.println("Firm=" + ab.getField("firmname"));
 System.out.println("Addr=" + ab.getField("addressline"));
 System.out.println("City=" + ab.getField("city"));
 System.out.println("State=" + ab.getField("state"));
 System.out.println("ZIP=" + ab.getField("ZIP10"));
 System.out.println("Match Code=" + ab.getField("MatchCode"));
 System.out.println("Longitude = " + ab.getField("longitude"));
 System.out.println("Latitude = " + ab.getField("latitude"));
 System.out.println("Location Quality Code = " +
ab.getField("LocationQualityCode"));

 private static void LonLatProcessRecords(QMSAddressBroker ab)
 throws IOException, AddressBrokerException
 {
 ab.processRecords(); // Send it to the server...
 // For each record that comes back...
 while (ab.getRecord()) {
 // appropriate processing of record here.
 // Print out the Spatial and GDL Results
 System.out.println("GDT ZIP5=" +
ab.getField("PolygonName[GDTZIP5]"));
 System.out.println("County=" +
ab.getField("PolygonName[COUNTIES]"));
 System.out.println("Soil Name=" +
ab.getField("PolygonName[SOILS]"));
 System.out.println("GDL ZIP5=" +
ab.getField("GDLPolygonName[GDTZIP5]"));
 System.out.println("GDLCounty=" +
ab.getField("GDLPolygonName[COUNTIES]"));
 System.out.println("GDLSoil=" +
ab.getField("GDLPolygonName[SOILS]"));
 System.out.println("GDL GDT ZIP5 Overlap=" +
ab.getField("PolygonOverlap[GDTZIP5]"));
 System.out.println("GDL County Overlap=" +
ab.getField("PolygonOverlap[COUNTIES]"));
 System.out.println("GDL Soil Overlap=" +
ab.getField("PolygonOverlap[SOILS]"));
 System.out.println("GDL Place Name=" +
ab.getField("GDLPolygonName[PLACE]"));
 System.out.println("GDL Muni Name=" +
ab.getField("GDLPolygonName[MUNI]"));
 System.out.println("GDL Place Overlap=" +
ab.getField("PolygonOverlap[PLACE]"));
 System.out.println("GDL Muni Overlap=" +
ab.getField("PolygonOverlap[MUNI]"));

 System.out.println("-----------------------------");
 getPolygonReturns(ab, "SOILS");

 System.out.println("\n\n");
 }
 }

AddressBroker Reference Manual for Windows 105

Step 2: Set properties

The client application should set the following properties using the setProperty method:

• INIT_LIST—The list of logical names the application uses.

Logical name and paths are set on the server. The logical names the client uses must
match those set on the server. The logical names the client application uses must be
defined server.ini file. See “LogicalNames” on page 329 for more information about
logical names.

In the example code shown in “Java setproperty example code” on page 106 the logical
names GEOSTAN and GEOSTAN_Z9 refer to a GeoStan data directory and a GeoStan ZIP
Code data file, respectively.

• INPUT_FIELD_LIST—The delimited list of field names. The allowable field names in the
INPUT_FIELD_LIST are determined by your input data format and the INPUT_MODE
property. See “Defining the INPUT_FIELD_LIST” on page 67 for more information about
the INPUT_FIELD_LIST.

Note: The INPUT_FIELD_LIST defined in the client application overrides any settings in
the server.ini file.

In the sample code, AddressBroker uses the FirmName, AddressLine, and LastLine field
values from each input record.

• OUTPUT_FIELD_LIST—The delimited list of field names to retrieve from the output
records. Spatial+, GDL, and Demographics outputs require a logical name paired with
the output field name. See “Defining the OUTPUT_FIELD_LIST” on page 67 for more
information about the OUTPUT_FIELD_LIST.

Note: The OUTPUT_FIELD_LIST defined in the client application overrides any settings in
the server.ini file.

The sample shows how to enhance the address record with city, state, and ZIP10
information from the GeoStan data file.

You may set other properties in the client. In the example code, KEEP_MULTIMATCH and
BUFFER_RADIUS are set. See Chapter 13 Properties for a detailed discussion about other
properties.

Java property reference syntax
//setting a property using its string name

ab.setProperty ("MIXED CASE", true);

//setting a property using its property ID

ab.setProperty (ABConst.AB_MIXED_CASE, true);

AddressBroker Reference Manual for Windows 106

//setting a pre-defined property using its string name

ab.setProperty ("INPUT_MODE", ABConst.AB_INPUT_PARSED);

//setting a pre-defined property using its property ID

ab.setProperty (ABConst.AB_INPUT_MODE, ABConst.AB_INPUT_PARSED);

Java setproperty example code
// Set client side properties
 // These properties are typically a subset of the properties listed
on // the server. If no properties are specified, the application
can // access any of the properties specified in the server.ini file.
 try
 {
 // Tell AddressBroker what logical Names we are using.
 // For this example, we are doing only address standardization
and
 // geocoding so only GeoStan properties are used.

 ab.setProperty("INIT_LIST","Geostan|Geostan_Z9);

 // Here we tell AddressBroker the input record format. Although
we // do this only once in the example, it is
 // a dynamic property so you could set it at any time, as many

// times as you want.
ab.setProperty("INPUTFIELDLIST", "firmname|addressline" +

 "|lastline");

 // This is list of the output fields listed in the output record.
 ab.setProperty("OUTPUTFIELDLIST",
firmname|addressline|city|state|"+

"zip10|match_code|longitude|latitude");

// Set properties that affect the behavior of the server
// These properties will override behavior specified in the
// server.ini file
// Set the input mode

 ab.setProperty("Input_Mode", 0);

 // Only want single output record for each input record...
 ab.setProperty("Keep_multimatch", false);

 // 200 foot buffer instead of the default of 50
 ab.setProperty("BUFFER RADIUS", 200);
 }
 catch (IllegalArgumentException illArg)
 {
 // Any of the following occurred:
 // * Attempt to set a non-existent property
 // * Data type mismatch (E.g. set a string property to
 // an Integer value)
 // * value was null
 illArg.printStackTrace();
 return null;
 }

AddressBroker Reference Manual for Windows 107

Step 3: Validate properties (optional)

Use the validateProperties method to send the property definitions to the server for
validation. When validateProperties returns true, the AddressBroker client object
properties are set correctly and are ready for processing. If any property setting is invalid,
an error is generated.

validateProperties can be invoked multiple times in your application. For example, you
can initially set and validate a group of properties, then allow the end user to dynamically
select new values and revalidate the settings.

Java validateProperties example
// Check to see that properties are valid.
 try
 {
 ab.validateProperties();
 }
 catch (AddressBrokerException abException)
 {
 abException.printStackTrace();
 return null;
 }
 // We have successfully initialized our instance.
 return ab;

Step 4: Enter input records and field values

Next, invoke the setField method to specify the input field values. These input field values
are the same fields values specified initially when setProperty was invoked with the
INPUT_FIELD_LIST property (see “Java setproperty example code” on page 106). You must
call setField for each input field value before calling setRecord.

An input value need not be set for every field in a record. In the sample code, an individual
record that did not contain FirmName information could still be processed.

Invoking setRecord adds the data for the current record to the input record list and
advances the record reference.

Java data input example
// Build a few records for enhancement...
private static void fillRecords(QMSAddressBroker ab)

throws IllegalArgumentExceptions, AddressBrokerException
{

// Fill in a record...
// An IllegalArgumentException is thrown when setField is invoked

// with a bad field name (setField(“xxx”, ...))
// or a null value (setField(...,null))
ab.setField(“FirmName”, “Centrus”);
ab.setField(“AddressLine”, “4750 Walnut”);
ab.setField(“lastLine”, “Boulder, CO”);

AddressBroker Reference Manual for Windows 108

// setRecord can throw and AddressBrokerExecption-but only if
// setField is never invoked.
ab.setRecord();
// Fill in the next record...
ab.setField(“FirmName”, “White House”);
ab.setField(“AddressLine”, “1600 Pennsylvania”);
ab.setField(“LastLine”, Washington, DC);
ab.setRecord();

}

Step 5: Process records

After all the input data is entered, you are ready to process the records. Use the
processRecords method to send all the data to the server for processing. In the sample
code, GeoStan data files are used to augment address records.

Note: Invoking this method clears the input record buffer, even if it fails.

Java record processing example
ab.processRecords(); // Send it to the server...

Step 6: Retrieve address records and field values

Invoke getRecord and getField to retrieve the output data. The sample code in Java record
and field value retrieval example combines this with a system call to display the output. It
also shows an example of how to retrieve values from a multi-valued field.

In your Java applications, loop through Steps 4 through 6 of this tutorial each time you
process additional records. You can also repeat Steps 2 and 3 to modify property settings.

Java record and field value retrieval example
private static void myProcessRecords(QMSAddressBroker ab)
 throws IOException, AddressBrokerException
 {
 ab.processRecords(); // Send it to the server

 // For each record that comes back...
 while (ab.getRecord())
 {
 // Print out the basic address

System.out.println("Firm=" + ab.getField("firmname"));
System.out.println("Addr=" + ab.getField("addressline"));
System.out.println("City=" + ab.getField("city"));
System.out.println("State=" + ab.getField("state"));
System.out.println("ZIP=" + ab.getField("ZIP10"));
System.out.println("MatchCode=" + ab.getField("matchcode"));
System.out.println("Longitude=" + ab.getField("longitude"));
System.out.println("Latitude=" + ab.getField("latitude"));
System.out.println("\n\n");

 }
 }

AddressBroker Reference Manual for Windows 109

AddressBroker Java methods
The methods described in this chapter are methods of three public classes/interfaces:
QMSAddressBrokerFactory, QMSAddressBroker, and AddressBrokerException. Within each
class/interface, methods are listed alphabetically. The method syntax in the Java API is:

• is the name of the class.

Some methods are listed as:
methodName (overloaded)

This indicates there are two or more methods with the same name whose behavior
depends on the parameters it is given. For example, the same method accepts either a
Boolean type or a string type.

AddressBroker Reference Manual for Windows 110

Quick reference

QMSAddressBrokerFactory Class

make

Creates and initializes instances of QMSAddressBroker subclasses. Must be invoked
before any other method. With the Java API, you cannot directly instantiate a
QMSAddressBroker instance. Use the QMSAddressBrokerFactory helper class to create an
instance.

QMSAddressBroker class

Field/data methods

clear

Clears the input and output record buffers and resets all counter properties to zero.

getField (overloaded)

Retrieves the value(s) of an output field in the current output record. Invoke iteratively
for fields that contain multiple values.

getFieldAttribute

Retrieves a field attribute, such as its data type and description.

resetField

Resets the output field reference to the first value of an output field.

setField

Sets an input field value in the current input record.

getRecord

Retrieves the record and advances the output record reference.

resetRecord

Resets the output record reference to the first record of the output record buffer.

setRecord

Adds the data for the current record to the input record buffer and advances the input
record reference to the next empty record.

AddressBroker Reference Manual for Windows 111

Property methods

getProperty (overloaded)

Retrieves the value of an input or output property.

getPropertyAttribute (overloaded)

Retrieves a property attribute, such as its name, data type, and description.

setProperty (overloaded)

Sets the value of a property.

setSocketReadTimeout

Forces the client-side socket to time out after waiting for a server response.

validateProperties

Validates properties for consistency and completeness. This method must be invoked
after setProperty and before invoking setField.

Processing methods

processRecords

Processes a set of one or more address records.

lookupRecord

Processes a single incomplete address record.

Termination method

close

Closes any active connections to a server.

AddressBrokerException class

Status code method

getStatusCode

Retrieves the status code of a thrown exception.

AddressBroker Reference Manual for Windows 112

QMSAddressBrokerFactory class

Use the QMSAddressBrokerFactory class to create concrete instances of the various
subclasses of QMSAddressBroker. The factory has only one method, make.

make

Creates instances of QMSAddressBroker subclasses.

Class
QMSAddressBrokerFactory

Syntax
String make
(String in_hostlist,
 String in_transport,
 String in_user,
 String in_password)
throws IllegalArgumentException,
 InstantiationException

Arguments

in_hostlist A delimited list. Input.

in_transport Case-insensitive string that specifies the network protocol
AddressBroker uses.

in_user A valid user name. Input.

in_password A valid user’s password. Input.

Return Values

None.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 113

Notes

The client transparently switches between servers if it has a problem establishing
communication with its current server. That is, when the client executes a command that
includes a server transaction, it switches servers if there is no response from the current
server or a transaction fails.

An AddressBroker client uses the first server specified in in_hostlist until the server fails,
at which point it switches to the next server listed in in_hostlist. The client continues to
use this secondary server until it—the secondary server—fails. After a failed server is
operational, it again becomes available to the client. However, the client does not switch
back unless its current server fails. When a client searches for a server and encounters the
end of in_hostlist, it continues searching from the beginning of the list.

On a per-transaction basis, the client tries each server in turn until it finds an operational
server. If it fails to find a server, the operation fails.

When listing multiple servers, it is extremely important that they all service client requests
identically. To ensure predictable results, make sure that the server .ini files on each host
use the same initialization settings.

There are two valid protocols for the make method: SOCKET and NOCONNECT. Both
SOCKET and NOCONNECT make standard sockets connections to the Address Broker
server. However, the SOCKET protocol actually makes a connection to the server and gets
a list of properties as set by the Server INI file. The NOCONNECT protocol does not make
that connection. NOCONNECT is appropriate for production environments where all
processing is defined programmatically, and not by the end user.

An InstantiationException is thrown when an AddressBroker instance cannot be created.

An IllegalArgumentException is thrown when the value in in_transport is not a
supported protocol.

Example 1
// Socket protocol using the computer name
ab = QMSAddressBrokerFactory.make (“primary:1234 | secondary:1235”,
“socket”, “MyLogon”, “MyPassword”) ;

Example 2
// Socket protocol using a URL
ab = QMSAddressBrokerFactory.make (“centrus.com:1234 | centrus-
software.com:1235”, “socket”, “MyLogon”, “MyPassword”) ;

Example 3
// Socket protocol using an IP address
ab = QMSAddressBrokerFactory.make (“204.180.129.200:1234 |
209.38.36.44:1235”, “socket”, “MyLogon”, “MyPassword”) ;

AddressBroker Reference Manual for Windows 114

QMSAddressBroker class

The QMSAddressBroker interface provides all public methods required by the user. It is not
possible to make a concrete QMSAddressBroker instance. Instead, use the
QMSAddressBrokerFactory class to create an instance of QMSAddressBroker.

clear

Clears input and output record buffers and resets counter properties.

Class
QMSAddressBroker

Syntax
boolean clear ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

None.

Alternates

None.

close

Forces any active connection to a server to close.

Class
QMSAddressBroker

Syntax
void close ()

AddressBroker Reference Manual for Windows 115

Parameters

None.

Return Values

None.

Prerequisites

make

Alternates

None.

Notes

The instance is no longer usable after invoking close.

Failure to invoke close may prevent your process from exiting when expected due to
monitor threads persisting beyond the lifetime of your program's other threads.

getField (overloaded)

Retrieves output field values from the current output record.

Class
QMSAddressBroker

Syntax
String getField (

String
in_FieldName)
throws IllegalArgumentException,
 AddressBrokerException
String getField (

String
in_FieldName,

String in_LogicalName)
throws IllegalArgumentException,
 AddressBrokerException

Parameters

in_FieldName A valid, fully specified field name listed in the
OUTPUT_FIELD_LIST property (see the examples for this

AddressBroker Reference Manual for Windows 116

function). The property name is not case sensitive, and spaces
and underscores are ignored. Input.

in_LogicalName The logical name required by the value of in_FieldName. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

Return Values

Single value fields: returns the field value.

Multi-value fields: returns the current value and advances the reference to the next value in
the field.

Returns null when no values are found.

Prerequisites
getRecord

Alternates

None.

Notes

The getField method retrieves a field value from the current output record. Invoke
getField iteratively for multi-valued fields. Use the resetField method to reset the field to
its first value. To retrieve single value fields more than once, you must invoke resetField.

An IllegalArgumentException is thrown when:

• in_FieldName is null or the empty string (“”).
• in_FieldName and/or in_LogicalName are invalid.
• in_FieldName is not in the OUTPUT_FIELD_LIST property.

An AddressBrokerException is thrown when no output records are available.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

Example1
//Example using a field that does not require a logical name.
String fieldvalue = ab.getField ("CITY");

Example 2
//Example using a field with its logical name in brackets.
String fieldvalue = ab.getField ("PolygonName[COUNTIES]");

AddressBroker Reference Manual for Windows 117

Example 3
//Example using a field with its logical name as a separate parameter.
String fieldvalue = ab.getField ("PolygonName", "COUNTIES");

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AddressBroker Reference Manual for Windows 118

getFieldAttribute

Retrieves a field attribute.

Class

QMSAddressBroker

Syntax
String getFieldAttribute (

String in_FieldName,
int in_FieldIOType,
int in_AttributeId)

 throws IllegalArgumentException,
 AddressBrokerException

Parameters

in_FieldName A valid field name listed in the INPUT_FIELD_LIST or
OUTPUT_FIELD_LIST property. The property name is not
case sensitive, and spaces and underscores are ignored. Do
not associate logical names with field names when using this
method. Input.

in_FieldIOType A symbolic constant identifying the field name as an input field
(QMSABConst.AB_FIELD_INPUT) or an output field
(QMSABConst.AB_FIELD_OUTPUT). Input.

in_AttributeId A symbolic constant identifying the attribute to retrieve. Input.

Return Values

Returns the value of the field’s attribute. Integer values are returned as strings.

Prerequisites

setField

Alternates

None.

Notes

getFieldAttribute retrieves a field attribute’s value. These are general attributes, not
specific to a record. Valid attribute constants below are all public static members of the
QMSABConst class.

AddressBroker Reference Manual for Windows 119

Attribute Values

 Example
{
ab.validateProperties();
String fieldattr = ab.getFieldAttribute
("CITY",QMSABConst.AB_FIELD_INPUT, QMSABConst.AB_FIELD_LENGTH);
fieldattr = ab.getFieldAttribute ("PolygonName",
QMSABConst.AB_FIELD_OUTPUT,QMSABConst.AB_FIELD_DATA_TYPE);
}

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AB_FIELD_DATA_TYPE “N” (numeric), “C” (character).

AB_FIELD_DECIMALS Number of decimal places, if numeric.

AB_FIELD_DESCRIPTION Short (32-character) description of field.

AB_FIELD_HELP Long (255-character) field description. This is not implemented for all
fields.

AB_FIELD_LENGTH Field width.

AB_FIELD_NEEDS_LOGICAL_NAME “0” (zero) = No logical name permitted.
“G” = A GeoStan logical name required.
“S” = A Spatial+ logical name required.
“D” = A DemoLib logical name required.
“C” = A GeoStan Canada logical name required.
“L” = A GDL logical name required.

AB_FIELD_NUM_VALUES Maximum number of unique values possible for field.
An IllegalArgumentException is thrown when:

in_FieldName is null or the empty string (“”).
in_FieldName is invalid.
in_FieldIOType is not in AB_INPUT_FIELD or

AB_OUTPUT_FIELD (global Java constants).
in_FieldIOType contains an invalid value.
in_AttributeId contains an invalid value.
An AddressBrokerException is thrown when:

validateProperties
is not invoked prior to getFieldAttribute.

There is a
communication problem with the server.

AddressBroker Reference Manual for Windows 120

getProperty (overloaded)

Retrieves a property value.

Class
QMSAddressBroker

Syntax
Object getProperty (

String in_PropName)
throws IllegalArgumentException
Object getProperty (

int in_PropId)
throws IllegalArgumentException

Parameters

in_PropName A valid property name. The property name is not case
sensitive. Spaces and underscores are ignored. Input.

in_PropID A valid property symbolic constant. Input.

Return Values

Returns the property value. The returned value Object is of type String, Integer, or
Boolean, corresponding to the property’s data type. Cast the return value to the appropriate
type.

Prerequisites

None.

Alternates

None.

Notes

The getProperty methods retrieve a property value.

An IllegalArgumentException is thrown when:

• in_PropName is null or the empty string (“”).
• in_PropName and/or in_PropID are invalid.

Example
Boolean propvalue = (Boolean)ab.getProperty (“MIXED CASE”);

AddressBroker Reference Manual for Windows 121

String propvalue = (String)ab.getProperty (QMSABConst.AB_INIT_LIST);

See Also

See Chapter 13 Properties for more information about properties.

getPropertyAttribute (overloaded)

Retrieves a property attribute.

Class
QMSAddressBroker

Syntax
String getPropertyAttribute (

String in_PropName,
int in_AttributeId)

throws IllegalArgumentException
String getPropertyAttribute (

int in_PropID,
int in_AttributeId)

throws IllegalArgumentException

Parameters

in_PropName A valid property name. The property name is not case
sensitive. Spaces and underscores are ignored. Input.

in_PropID A valid property symbolic constant. Input.

in_AttributeId A symbolic constant of the attribute to retrieve. Input.

Return Values

Returns the value of the attribute (see the examples for this function).

Prerequisites

setProperty if you want client property information.

Alternates

None.

Notes

An IllegalArgumentException is thrown when:

AddressBroker Reference Manual for Windows 122

• in_PropName or in_PropID is null or the empty string (“”).
• in_PropName or in_PropID is invalid.
• in_AttributeId contains an invalid value.

To receive information about properties set on the server, call make. To get server property
information, call getPropertyAttribute before setting any properties in the client code. To
receive information about client properties, call getPropertyAttribute after calling
setProperties.

Attribute Values

Example 1
//Example using the Property Name
String propattr = ab.getPropertyAttribute ("MIXED CASE",
QMSABConst.AB_PROPERTY_DATA_TYPE);

Example 2
//Example using the Property ID
String propattr = ab.getPropertyAttribute (QMSABConst.AB_INIT_LIST,
QMSABConst.AB_PROPERTY_LENGTH);

See Also

See Chapter 13 Properties for more information about properties.

AB_PROPERTY_DATA_TYPE “N” (Integer), “B” (Boolean), or “C” (String)

AB_PROPERTY_DEFAULT_VALUE Default property value

AB_PROPERTY_DESCRIPTION Short (100-character) description of property

AB_PROPERTY_ID Property ID

AB_PROPERTY_LENGTH Length of property value

AB_PROPERTY_NAME Property name

AB_PROPERTY_READ_ONLY “1” property is read-only
“0” property is read/write

AddressBroker Reference Manual for Windows 123

getRecord

Advances the reference to the next record in the output record buffer.

Class
QMSAddressBroker

Syntax
boolean getRecord ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

processRecords

Alternates

None.

Notes

The first time getRecord is invoked, it sets a reference in the output record buffer to the first
output record. Subsequent calls to getRecord advance the reference. When no further
records are found, false is returned.

Use the getField method to retrieve values from individual record fields. Use the
resetRecord method to reset the output record reference to the first output record.

Example
while (ab.getRecord())
{
for (int i = 0; i < fieldnames.length; ++i)
{
String value = ab.getField(fieldnames[i]);
}
}

AddressBroker Reference Manual for Windows 124

lookupRecord

Processes a single incomplete U.S. address record or performs a reverse lookup on a
Canadian postal code.

Class
QMSAddressBroker

Syntax
int lookupRecord ()
throws IOException,
 AddressBrokerException

Parameters

None.

Return Values

The OUTPUT_FIELD_LIST property defines the fields populated by lookupRecord,
and the return codes listed below describe the search outcome. Individual codes
are returned only when the relevant fields are included in OUTPUT_FIELD_LIST.
A return value of zero (0) indicates an internal failure.

Return Codes

AB_LOOKUP_ADDRESS_LINE_INCOMPLETE
For a U.S. address, the firm name or unit number could not be
resolved. Multiple incomplete records were returned. The user
can be prompted to submit more information. The most useful
fields for resolving a match generally include FirmName,
HighUnitNumber, LowUnitNumber, MatchCode, and UnitType.

Other helpful fields include AddressLine, AddressLine2,
CarrierRoute, CountyName, FIPSCountyCode,

GovernmentBuildingIndicator, HighEndHouseNumber,

LACSAddress, LastLine, LowEndHouseNumber,

PostfixDirection, PrefixDirection, RoadClassCode,

SegmentBlockLeft, SegmentBlockRight, State,

UrbanizationName, USPSRangeRecordType, ZIP,

ZIPCarrtSort, ZIPCityDelivery, ZIPClass, ZIPFacility,

and ZIPUnique.

For a Canadian postal code, the input Postal Code is resolved
to a range of possible addresses that contain a single street
number. The street number suffix or unit number values will
vary over the range.

AddressBroker Reference Manual for Windows 125

AB_LOOKUP_LAST_LINE_NOT_FOUND
For a U.S. address, multiple incomplete records were
returned; the LastLine was not resolved. Iteratively invoke
getRecord to retrieve the possible matches. Only the following
output fields are returned: MatchCode, CITY, State, ZIP, and
ZIPFacility. For a Canadian postal code, this return code
indicates that the input postal code was not found in the CPC
data and is invalid.

AB_LOOKUP_MULTIPLE_MATCH
For a U.S. address, the address resolved to a multiple match.
Multiple complete address records returned. Iteratively invoke
getRecord to retrieve possible matches. For a Canadian
postal code, the postal code resolved to a range of possible
addresses that vary over the street.

AB_LOOKUP_NOT_FOUND
The address could not resolve to a match or possible match.
No records returned. Provide a more complete address. (This
return code is not used for Canada.)

AB_LOOKUP_SUCCESS
For a U.S. address, a complete single address was matched
and returned. For a Canadian postal code, a single address
was matched and returned.

AB_LOOKUP_TOO_MANY_CITIES
No records returned. An incomplete LastLine matched over
100 cities. Provide a more complete address. (This return
code is not used for Canada.)

Prerequisites

None.

Alternates

setRecord

Notes

The lookupRecord method processes a single input record and should be used only when
address information is insufficient for standardization. To process single or multiple records
containing complete addresses, use processRecords.

Minimally, address information for lookupRecord must include a street number, a partial
street name, and/or valid LastLine information. For Canada, a valid postal code is required
and will return a single address or a range of addresses.

AddressBroker Reference Manual for Windows 126

lookupRecord is most useful in interactive programs, when an application may have to
invoke lookupRecord iteratively to find a match for an incomplete address. In client/server
and Internet environments, the record is transferred across the network with each call to
lookupRecord. The method does not return until the record is processed. When
lookupRecord processes an address record and fails to find an exact match, it does an
extensive search to find cities and streets that are possible matches.

The INPUT_FIELD_LIST property specifies the list of fields passed to lookupRecord.
Generally, you provide at least FirmName, AddressLine, and LastLine fields as input to
lookupRecord. For Canada, a valid Canadian Postal Code is the only input, and it is set
using the PostalCode input field. Only one Postal Code can be processed at a time.

The OUTPUT_FIELD_LIST property specifies the list of possible fields returned.

The MAXIMUM_LOOKUPS property limits the number of multiples—possible matches—that are
returned by lookupRecord. The upper limit of MAXIMUM_LOOKUPS is 100. For a Canadian postal
code, if the MAXIMUM_LOOKUPS is set to 100, the Dressmakers software increases the
MAXIMUM_LOOKUPS to 200.

Retrieve the list of possible matches using a ‘while (getRecord) do getField’ loop.
No records are returned when the return value of lookupRecord is
AB_LOOKUP_NOT_FOUND or AB_LOOKUP_TOO_MANY_CITIES.

Precisely recommends using processRecords instead of lookupRecord.

An IOException is thrown if the client receives a corrupted message, for example, when
there is a failure in the network transport layer.

AddressBroker throws an AddressBrokerException when:

• Severe problems occur when processing a user request.
• A time-out occurs.
• Logic errors exist.

Example

In an interactive application, a user submits a partial address to lookupRecord. The return
code is AB_LOOKUP_LAST_LINE_NOT_FOUND. For a U.S. address, this code indicates that
the user did not enter enough information for lookupRecord to resolve the city, state, or ZIP
Code. The application prompts the user to select from the list of possible cities and states
returned by lookupRecord. The user selects the necessary information and resubmits the
address to lookupRecord. For a Canadian postal code, this return code indicates that the
input postal code was not found in the CPC data and is invalid.

This time the return code is AB_LOOKUP_ADDRESS_LINE_INCOMPLETE. The user
resolved the last line problem, but the return code indicates the address line could be more
specific. For a U.S. address, it is missing information on the firm name or unit number

AddressBroker Reference Manual for Windows 127

(suite, apartment, etc.). The application can prompt the user to select from the list of
possibilities returned by this call to lookupRecord. The user enters the additional information
and resubmits the address to lookupRecord, and AB_LOOKUP_SUCCESS is returned. For a
Canadian postal code, the AB_LOOKUP_ADDRESS_LINE_INCOMPLETE code indicates that
the input Postal Code resolved to a range of possible addresses that contain a single street
number. The street number suffix or unit number values will vary over the range. For
example, a Canadian postal code of T3C 2K7 could resolve to 123 A - 123 G Maple Street
(when the street suffix varies) or 123 Maple Street Unit 1-100 (when the unit number
changes). A valid postal code for one address submitted to lookupRecord returns
AB_LOOKUP_SUCCESS.

When the next address is entered, lookupRecord returns the status code
AB_LOOKUP_MULTIPLE_MATCH. This indicates multiple complete matches were found. For
a U.S. address, the user may then be prompted to select from the list of possible matches.
The selected address is resubmitted to lookupRecord to ensure that it is entirely correct, and
that AB_LOOKUP_SUCCESS is returned. For a Canadian postal code, the
AB_LOOKUP_MULTIPLE_MATCH code indicates a postal code that resolved to a range of
possible addresses that vary over the street. For example, a Canadian postal code could
resolve to 100-120 Elm, Calgary, AB or 150-165 Maple, Calgary, AB.

processRecords

Processes a set of one or more address records.

Class
QMSAddressBroker

Syntax
void processRecords ()
throws IOException,
 AddressBrokerException

Parameters

None.

Return Values

None.

Prerequisites

setRecord

AddressBroker Reference Manual for Windows 128

Alternates

None.

Notes

Each record should contain enough address information for standardization. For records
containing incomplete addresses, use lookupRecord, which progressively returns address
choices for one input record at a time.

The method call does not return until all of the records are processed.

An IOException is thrown if the client receives a corrupted message; for example, when
there is a failure in the network transport layer.

AddressBroker throws an AddressBrokerException when:

• severe problems occur when processing a user request.
• a time-out occurs.
• there are logic errors.

See Also

See Chapter 13 Properties for more information about properties.

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

resetField

Resets the output field reference to the first value of a multi-valued output field.

Class
QMSAddressBroker

Syntax
boolean resetField (

String in_FieldName,
String in_LogicalName)

throws IllegalArgumentException

Parameters

in_FieldName A valid field name listed in the OUTPUT_FIELD_LIST property.
Some field names require a logical name. The logical name
may be appended to in_FieldName in brackets, or passed in

AddressBroker Reference Manual for Windows 129

the in_LogicalName parameter (see the examples for this
function). The property name is not case sensitive, and spaces
and underscores are ignored. Input.

in_LogicalName The logical name required by the value of in_FieldName. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

Return Values

true if successful, false if unsuccessful.

Prerequisites

getField

Alternates

None.

Notes

The output field reference is reset to the first value of the output field.

 resetField returns false when in_FieldName is not found.

An IllegalArgumentException is thrown when:

• in_FieldName is null or the empty string (“”).
• A logical name is provided in both in_FieldName and in_LogicalName.

If getField is called with the logical name in brackets, resetField should be called with the
logical name in brackets. Similarly, if the logical name is passed as a separate parameter in
getField, then resetField must also use separate parameters. This is for consistency
purposes only; does not cause an error.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

Example 1
// Example using field name with its logical name in brackets.
while (ab.getField ("polygonName[COUNTIES]"))
{
...
}
ab.resetField ("PolygonName","PolygonName[Counties]");

AddressBroker Reference Manual for Windows 130

Example 2
// Example using field name with its logical name as separate
parameter.
while (ab.getField ("polygonName", "COUNTIES"))
{
...
}
ab.resetField ("PolygonName", "Counties");

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AddressBroker Reference Manual for Windows 131

resetRecord

Resets output record reference to the first record in the output record buffer.

Class
QMSAddressBroker

Syntax
boolean resetRecord ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites
getField

Alternates

None.

setField

Sets an input field value in the current input record.

Class
QMSAddressBroker

Syntax
void setField (

String in_FieldName,
String in_FieldValue)

throws IllegalArgumentException,
 AddressBrokerException

Parameters

in_FieldName A valid field name listed in the INPUT_FIELD_LIST property.
The property name is not case sensitive, and spaces and
underscores are ignored. Input.

AddressBroker Reference Manual for Windows 132

in_FieldValue The string value to assign to the field. Maximum string length
is determined by the AB_FIELD_LENGTH field attribute.
Input.

Return Values

None.

Prerequisites

setProperty

Alternates

None.

Notes

The RECORD_DELIMITER, FIELD_DELIMITER, and VALUE_DELIMITER properties have default
values of line feed, tab, and CTRL-A, respectively. If your data contains any of these
characters, you must reset the appropriate property to a different character. In addition,
your data may not contain the NULL character.

An IllegalArgumentException is thrown when:

• in_FieldName is null or the empty string (“”).
• in_FieldName is invalid.
• in_FieldName is not in the INPUT_FIELD_LIST property.
• The length of in_FieldValue is > 256 characters.

An AddressBrokerException is thrown when:

• in_FieldValue is null.
• Properties were set (via setProperty) but were not validated (via

validateProperties).

Example
ab.setField (“AddressLine”, “123 Main”);
ab.setField (“LastLine”, “Anytown, NY”);

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AddressBroker Reference Manual for Windows 133

setProperty (overloaded)

Assigns a property value.

Class
QMSAddressBroker

Syntax
void setProperty (

String in_PropName,
Boolean in_bPropValue)

throws IllegalArgumentException
void setProperty (

String in_PropName,
boolean in_bPropValue)

throws IllegalArgumentException
void setProperty (

String in_PropName,
String in_sPropValue)

throws IllegalArgumentException
void setProperty (

String in_PropName,
Integer in_iPropValue)

throws IllegalArgumentException
void setProperty (

String in_PropName,
int in_iPropValue)

throws IllegalArgumentException
void setProperty (

int in_PropID,
Boolean in_bPropValue)

throws IllegalArgumentException
void setProperty (

int in_PropID,
boolean in_bPropValue)

throws IllegalArgumentException
void setProperty (

int in_PropID,
String in_sPropValue)

throws IllegalArgumentException
void setProperty (

int in_PropID,
Integer in_iPropValue)

throws IllegalArgumentException
void setProperty (

int in_PropID,
int in_iPropValue)

throws IllegalArgumentException

Parameters

in_PropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

AddressBroker Reference Manual for Windows 134

in_PropID The valid symbolic constant of the property being set. Input.

in_bPropValue A Boolean object or Boolean value to assign to the property.
Input.

in_sPropValue A string value to assign to the property. Input.

in_iPropValue An integer object or integer value to assign to the property.
Input.

Return Values

None.

Prerequisites

QMSAddressBrokerFactory.make

Alternates

None.

Notes

The specific setProperty method to use depends on the data type of the property you are
setting.

An IllegalArgumentException exception is thrown when:

• in_PropName or in_PropID are null or invalid.
• The property value is null.
• The data type of the property does not correspond to the data type of the value.

Example
ab.setProperty (“MIXED CASE”, true);
ab.setProperty (QMSABConst.AB_INIT_LIST, “GEOSTAN |COUNTIES”);

See Also

See Chapter 13 Properties for more information about properties.

AddressBroker Reference Manual for Windows 135

setRecord

Adds data for the current record to the input record buffer and advances the input record
reference to the next empty record in the buffer.

Class
QMSAddressBroker

Syntax
void setRecord ()

Parameters

None.

Return Values

None.

Prerequisites

setField

Alternates

None.

AddressBroker Reference Manual for Windows 136

setSocketReadTimeout

Forces the client-side socket to time out after waiting for a server response.

Class
QMSAddressBroker

Syntax
void setSocketReadTimeout (int seconds)

Parameters

int seconds The number of seconds spent waiting for a server response
before a timeout occurs.

Return Values

None.

Prerequisites

None.

Alternates

None.

Notes

The setSocketReadTimeout method controls the timeout for establishing the initial socket
connection to the server. It forces the client-side socket to time out after a specific number
of seconds spent waiting for a server response. If the socket read times out, a failure
message is sent to the application.

The application should check the success of the processRecords call to verify a good status
was returned. The Java client API also throws an AddressBrokerException when a problem
is discovered. If the application does not set the socket read timeout, or if it makes the call
and passes a zero as the parameter, the program continues to wait for a response from the
server.

Example
broker.setSocketReadTimeout(5);

AddressBroker Reference Manual for Windows 137

validateProperties

Validates properties for consistency and completeness.

Class
QMSAddressBroker

Syntax
void validateProperties ()
throws AddressBrokerException

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

setProperty

Alternates

None.

Notes

The validateProperties method verifies the values of initialization and processing control
properties to ensure a complete and compatible set of values are available to
AddressBroker. Call this method after one or more properties have been set and before
calling setField or any processing methods.

When validateProperties returns true, it indicates all properties have been successfully
validated and that AddressBroker is ready to process records. In some cases, all properties
can be validated in a single method call.

See Also

See Chapter 13 Properties for more information about properties.

AddressBroker Reference Manual for Windows 138

AddressBrokerException class

AddressBroker methods throw an object of this class to indicate run-time, logical, or
processing errors.

getStatusCode

Retrieves the Status Code from a thrown exception.

Class
AddressBrokerException

Syntax
long getStatusCode ()

Parameters

None.

Return Values

Returns the 10-digit integer status code.

Prerequisites

None.

Alternates

None.

Notes

getStatusCode is available only while an exception object is accessible (in scope).

See Also

See “GeoStan location codes” on page 433 for a description of status codes. See
“AddressBroker Java exceptions” on page 139 for more information on this exception class.

AddressBroker Reference Manual for Windows 139

AddressBroker Java exceptions
In the Java API, many AddressBroker methods have no return codes as compared to the C
and C++ APIs. Instead, your application must use exception handling. Exceptions are listed
in the method syntax statements.

The AddressBroker Java API throws four classes of exceptions:

• qms.addressbroker.client.AddressBrokerException – a general run time exception.
• java.lang.InstantiationException – instantiation failure.
• java.lang.IllegalArgumentException – a parameter to a method is improper.
• java.io.IOException – the output stream from a request to the server was corrupted.

AddressBrokerException class

An object of this class is thrown by the methods of the QMSAddressBroker class to indicate a
run-time, logical, or processing error. This exception class extends the
java.lang.RuntimeException by adding a status code and message.
AddressBrokerException handling example shows an AddressBrokerException try block
example. See “getStatusCode” on page 138 for information about the getStatusCode
method.

 AddressBrokerException handling example
...
 try {
 myAddressBrokerInstance.getField(“NONSENSE NAME”);
 catch(AddressBrokerException abException) {
 // Unknown field name error
 System.out.println(“An exception occurred:\n” + abException);
 System.out.println(“ErrorCode = “ + abException.getStatusCode());
 }
...

IllegalArgumentException class

Parameters passed to methods are checked for correctness. IllegalArgumentException
handling example shows an example that checks for an IllegalArgumentException.

IllegalArgumentException handling example
...
 try {
 myAddressBrokerInstance.getField(null);
 catch(IllegalArgumentException illArgExcept) {
 // Unknown field name error
 System.out.println(illArgExcept);
 }
...

AddressBroker Reference Manual for Windows 140

IOException class

AddressBroker throws an exception of this class when the output stream received from a
processRecords or a lookupRecord call is corrupted.

9 – .NET API

In this chapter

Accessing the AddressBroker .NET library 142
AddressBroker .NET tutorial 142
AddressBroker .NET methods 159
AddressBroker .NET exceptions 188

AddressBroker Reference Manual for Windows 142

This chapter describes the .NET API to AddressBroker in detail.

This chapter includes a tutorial using the AddressBroker .NET API. The tutorial shows you
how to use most of AddressBroker’s functionality, yet is general enough that you can modify
it for other uses. A complete method reference follows the tutorial. The final section of this
chapter discusses error handling.

The naming convention for AddressBroker .NET API methods is MethodName.

Accessing the AddressBroker .NET library
To use the AddressBroker .NET API, you must have Microsoft .NET Framework installed on
your machine. The .NET Framework is part of the Microsoft Visual Studio .NET installation,
or you can download the Microsoft .NET Framework Software Development Kit from
 http://msdn.microsoft.com.

Note: .NET AddressBroker clients must use version 2.0 or higher of the .NET Framework.

AddressBroker .NET tutorial
This section describes the steps necessary to develop a .NET client application using the
AddressBroker .NET API. The example shows basic .NET sample code that performs
address record enhancement. It uses the firm name and address fields from the address
records as input. This example standardizes the address data and augments it with city,
state, and 9-digit ZIP Code information from the GeoStan Precisely Enhanced data
directory.

Step 1: Create and initialize the client object

Use the C# using statement for the Centrus®. AddressBroker namespace to allow class
references without having to specify the fully qualified class name. The
AddressBrokerFactory helper class creates an instance of ABClient for you.

.NET initialization example
[C#]
using Centrus.AddressBroker;
ABClient ab = null;
try
{
ab = AddressBrokerFactory.Make(AddressBrokerServer + ":" +
AddressBrokerPort, "SOCKET");
}
catch (AddressBrokerException abe)
{
Console.WriteLine("AddressBrokerFactory.Make exception: " +
abe.Message);
}

AddressBroker Reference Manual for Windows 143

catch (ArgumentOutOfRangeException rangeArg)
{
Console.WriteLine("AddressBrokerFactory.Make out of range exception: " +
rangeArg.Message);
}
catch (ArgumentNullException nullArg)
{
Console.WriteLine("AddressBrokerFactory.Make null argument exception: "
+ nullArg.Message);
}
catch (Exception e)
{
Console.WriteLine("AddressBrokerFactory.Make exception (type " +
e.ToString() + "): " + e.Message);
}

[Visual Basic]
Dim ab As New AddressBrokerFactory()
Dim abclient As New ABClient()

'create the AB Client and connect to an AddressBroker Server
Try
abclient = ab.Make(txtServer.Text & ":" & txtPort.Text, "SOCKET", "", "")
Catch abe As AddressBrokerException
MsgBox(abe.Message, MsgBoxStyle.Critical, "AB AddressBrokerException")
Exit Sub
Catch nullArg As ArgumentNullException
MsgBox(nullArg.Message, MsgBoxStyle.Critical, "AB
ArgumentNullException")
Exit Sub
Catch rangeArg As ArgumentOutOfRangeException
MsgBox(rangeArg.Message, MsgBoxStyle.Critical, "AB
ArgumentOutOfRangeException")
Exit Sub
Catch er1 As Exception
MsgBox(er1.Message, MsgBoxStyle.Critical, "AB Exception: " +
er1.ToString())
Exit Sub
End Try

Production code example
using System;
using System.IO;
using Centrus.AddressBroker; //Use this to import the Address Broker
classes

namespace AddressBrokerCSharpConsoleExample
{
 class SimpleConsole
 {
 [STAThread]
 static void Main(string[] args)
 {
 string AddressBrokerServer; // default is localhost
 string AddressBrokerPort; // default is 4660

 // Specify the machine name where the server is running
 // (list should be host:port|host:port)

AddressBroker Reference Manual for Windows 144

 Console.Write("Address Broker Server (default: localhost): ");
 AddressBrokerServer = Console.ReadLine();
 if (AddressBrokerServer.Equals(string.Empty) == true)
 {
 AddressBrokerServer = "localhost";
 }

 Console.Write("Address Broker Port (default: 4660): ");
 AddressBrokerPort = Console.ReadLine();
 if (AddressBrokerPort.Equals(string.Empty) == true)
 {
 AddressBrokerPort = "4660";
 }

 /// Step #1

 ABClient ab = null;
 Try
 // Using NOCONNECT for production
 {
 ab = AddressBrokerFactory.Make(AddressBrokerServer + ":"
+ AddressBrokerPort, "NOCONNECT");
 }
 catch (AddressBrokerException abe)
 {
 Console.WriteLine("AddressBrokerFactory.Make exception:
" + abe.Message);
 }
 catch (ArgumentOutOfRangeException rangeArg)
 {
 Console.WriteLine("AddressBrokerFactory.Make out of range
exception: " + rangeArg.Message);
 }
 catch (ArgumentNullException nullArg)
 {
 Console.WriteLine("AddressBrokerFactory.Make null argument
exception: " + nullArg.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("AddressBrokerFactory.Make exception
(type " + e.ToString() + "): " + e.Message);
 }

/// End Step #1

 /// Step #2

 // Set client side properties
 // These properties are typically a subset of the properties
listed on
 // the server. If no properties are specified, the application
can
 // access any of the properties specified in the server.ini file.
 try
 {
 // Tell AddressBroker what logical Names we are using.
 // For this example, we are doing only address
standardization and
 // geocoding so only GeoStan properties are used.

AddressBroker Reference Manual for Windows 145

 ab.SetProperty("INIT_LIST", "Geostan|Geostan_Z9");
 // Here we tell AddressBroker the input record format.
Although we
 // do this only once in the example, it is
 // a dynamic property so you could set it at any time, as many
 // times as you want.
 ab.SetProperty("INPUTFIELDLIST",
"firmname|addressline|lastline");
 // This is list of the output fields listed in the output
record.
 ab.SetProperty("OUTPUTFIELDLIST",

"firmname|addressline|city|state|zip10|match_code|location_quality_code
|longitude|latitude");
 // Set properties that affect the behavior of the server
 // These properties will override behavior specified in the
 // server.ini file
 // Set the input mode
 ab.SetProperty("Input_Mode", 0);
 // Only want single output record for each input record...
 ab.SetProperty("Keep_multimatch", false);
 // 200 foot buffer instead of the default of 50
 ab.SetProperty("BUFFER RADIUS", 200);
 //
 Console.WriteLine("Keep Multimatch is: " +
ab.GetProperty(262));
 }
 catch (AddressBrokerException abe)
 {
 // Attempt to set a non-existent property
 // Data type mismatch (E.g. set a string property to
 // an Integer value)
 Console.WriteLine("Set Property failed: " + abe.Message);
 }
 catch (ArgumentOutOfRangeException rangeArg)
 {
 // A property was set to an invalid value or
 // the property name/id was incorrect.
 Console.WriteLine("Argument out of range: " +
rangeArg.Message);
 }
 catch (ArgumentNullException nullArg)
 {
 // A Parameter value was null
 Console.WriteLine("Null argument: " + nullArg.StackTrace);
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception (type " + e.ToString() + "):
" + e.Message);
 }

/// End Step #2

/// Step #4

// Establish the input variables
string firmname; // no default -- required
string address; // no default -- required
string lastline; // no default -- required

AddressBroker Reference Manual for Windows 146

string longitude; // no default -- required
string latitude; // no default -- required
string selection; // menu selection

bool ContinueProcessing = true;
bool ProcessRecs = true;
bool ReverseGeocode = false;

// Simple menu for user to choose either predefined samples
addresses or

// enter a single address.
while(ContinueProcessing == true)
{

ProcessRecs = true;
Console.WriteLine(" ");
Console.WriteLine("Please make a selection (1 or 2, q to

quit program): ");
Console.WriteLine("1 - Samples ");
Console.WriteLine("2 - Enter an address ");
Console.WriteLine("3 - Enter a lon/lat ");
Console.WriteLine("q - Quit ");
Console.WriteLine(" ");
Console.Write("Make selection: ");
selection = Console.ReadLine();

if (selection == null)
{

return;
}
switch(selection)
{

case "1":
/* Sample addresses filled in for

standardization
- An IllegalArgumentException is

thrown when SetField is invoked
 with a bad field name

(SetField("xxx", ...))
 or a null value (SetField(...,null))

*/
try
{ // Set data.

ab.SetField("firmname", "Group1
Software");

ab.SetField("addressLine", "4750
Walnut");

ab.SetField("lastline", "Boulder,
CO");

/* SetRecord can throw and
AddressBrokerExecption-but only if

 SetField is never invoked. */
ab.SetRecord();

// Fill in the next record...
ab.SetField("firmname", "White

House");
ab.SetField("addressline", "1600

Pennsylvania");

AddressBroker Reference Manual for Windows 147

ab.SetField("lastline",
"Washington, DC");

ab.SetRecord();

}
catch (AddressBrokerException abe)
{

Console.WriteLine("SetField or
SetRecord exception: " + abe.Message);

}
catch (ArgumentOutOfRangeException

rangeArg)
{

// If input value is too long, field
is invalid, or field is readonly.

Console.WriteLine("Argument out of
range: " + rangeArg.Message);

}
catch (ArgumentNullException nullArg)
{

/* Attempt to set a field to null or
the field name parameter

 was null. */
Console.WriteLine("Null argument: "

+ nullArg.StackTrace);
}
catch (Exception e)
{

Console.WriteLine("Exception (type
" + e.ToString() + "): " + e.Message);

}
break;

case "2":
// Allows user to enter an address for

standardization
// Get an address from the command line
Console.WriteLine(" ");
Console.Write("Firm: ");
firmname = Console.ReadLine();

Console.Write("Address: ");
address = Console.ReadLine();

Console.Write("LastLine: ");
lastline = Console.ReadLine();

try
{ // Set data from input lines.

ab.SetField("FIRMNAME", firmname);
ab.SetField("ADDRESSLINE",

address);
ab.SetField("LASTLINE", lastline);
ab.SetRecord();

}
catch (Exception e)
{

Console.WriteLine("SetField
Exception (type " + e.ToString() + "): " + e.Message);

}

AddressBroker Reference Manual for Windows 148

Console.WriteLine(" ");

break;

Exception (type " + e.ToString() + "): " + e.Message);
}

Console.WriteLine(" ");

break;
// User enters Q or q to quit the program.
case "Q":
case "q":

return;

default :
ProcessRecs = false;
break;

} // end of switch (selection)

// End Step #4

// Step #5
// Process Records
if(ProcessRecs)
{

try
{

ab.ProcessRecords();
}
catch (AddressBrokerException abe)
{

Console.WriteLine("ProcessRecords
exception: " + abe.Message);

}
catch (IOException ioe)
{

Console.WriteLine("ProcessRecord
communication exception: " + ioe.Message);

}
catch (Exception e)
{

Console.WriteLine("Exception (type " +
e.ToString() + "): " + e.Message);

}

Console.WriteLine(" ");

/// End Step #5
 }

/// Step #6
try
{

// For each record that comes back...
while (ab.GetRecord() == true)

AddressBroker Reference Manual for Windows 149

{
if (!ReverseGeocode)
{

// Print out the basic address
information

Console.WriteLine(" ");
Console.WriteLine("****** RESULTS

****** ");
Console.WriteLine(" ");
Console.WriteLine("Firm = " +

ab.GetField("firmname"));
Console.WriteLine("Address = " +

ab.GetField("addressline"));
Console.WriteLine("City = " +

ab.GetField("city"));
Console.WriteLine("State = " +

ab.GetField("state"));
Console.WriteLine("ZIP = " +

ab.GetField("ZIP10"));
Console.WriteLine("MatchCode = " +

ab.GetField("matchcode"));
Console.WriteLine("Location Quality

Code = " + ab.GetField("location_quality_code"));
Console.WriteLine("Longitude = " +

ab.GetField("longitude"));
Console.WriteLine("Latitude = " +

ab.GetField("latitude"));
Console.WriteLine(" ");

}
else
{

// Print out the basic address
information

Console.WriteLine(" ");
Console.WriteLine("****** REVERSE

GEOCODING RESULTS ****** ");
Console.WriteLine(" ");
Console.WriteLine("Address = " +

ab.GetField("addressline"));
Console.WriteLine("City = " +

ab.GetField("city"));
Console.WriteLine("State = " +

ab.GetField("state"));
Console.WriteLine("ZIP = " +

ab.GetField("ZIP10"));
Console.WriteLine("MatchCode = " +

ab.GetField("matchcode"));
Console.WriteLine("Location Quality

Code = " + ab.GetField("location_quality_code"));
// Console.WriteLine("Longitude = " +
ab.GetField("longitude"));
// Console.WriteLine("Latitude = " +
ab.GetField("latitude"));

Console.WriteLine(" ");
}

}
}
catch (AddressBrokerException abe)
{

AddressBroker Reference Manual for Windows 150

Console.WriteLine("GetRecords/GetField
exception: " + abe.Message);

}
catch (ArgumentOutOfRangeException rangeArg)
{

// Input field is invalid
Console.WriteLine("Argument out of range: " +

rangeArg.Message);
}
catch (ArgumentNullException nullArg)
{

// Input field is null.
Console.WriteLine("Null argument: " +

nullArg.StackTrace);
}
catch (Exception e)
{

Console.WriteLine("GetRecords/GetField exception
(type " + e.ToString() + "): " + e.Message);

}
/// End Step #6

} // end while(ContinueProcessing == true)

/// Step #7

ab.Close();

/// End Step #7

 }
 }
}

Step 2: Set properties

The client application should set the following properties using the SetProperty method:

• INIT_LIST—The list of logical names the application uses.

Logical name and paths are set on the server. The logical names the client uses must
match those set on the server. The logical names the client application uses must be
defined in the server INI file. See “LogicalNames” on page 329 for more information
about logical names.

In the example code shown in “.NET SetProperty example code” on page 152 the
logical names GEOSTAN and GEOSTAN_Z9 refer to a GeoStan data directory and a GeoStan
ZIP Code data file, respectively.

• INPUT_FIELD_LIST—The delimited list of field names. The allowable field names in the
INPUT_FIELD_LIST are determined by your input data format and the INPUT_MODE
property. See “Defining the INPUT_FIELD_LIST” on page 67 for more information about
the INPUT_FIELD_LIST.

Note: The INPUT_FIELD_LIST defined in the client application overrides any settings in
the server INI file.

AddressBroker Reference Manual for Windows 151

In the sample code, AddressBroker uses the FirmName, AddressLine, and LastLine
field values from each input record.

• OUTPUT_FIELD_LIST—The delimited list of field names to retrieve from the output
records. Spatial+, GDL, and Demographics outputs require a logical name paired with
the output field name. See “Defining the OUTPUT_FIELD_LIST” on page 67 for more
information about the OUTPUT_FIELD_LIST.

Note: The OUTPUT_FIELD_LIST defined in the client application overrides any settings in
the server INI file.

The sample shows how to enhance the address record with city, state, and ZIP10
information from the GeoStan data file.

You may set other properties in the client. In the example code, KEEP_MULTIMATCH and
BUFFER_RADIUS are set. See Chapter 13 Properties for a detailed discussion about other
properties.

.NET property reference syntax
[C#]
// Set client side properties.
ab.SetProperty("INIT_LIST", "Geostan|Geostan_Z9");
// Here we tell AddressBroker the input record format. Although we
// do this only once in the example, it is
// a dynamic property so you could set it at any time, as many
// times as you want.
ab.SetProperty("INPUTFIELDLIST", "firmname|addressline|lastline");
// This is list of the output fields listed in the output record.
ab.SetProperty("OUTPUTFIELDLIST",
"firmname|addressline|city|state|zip10|match_code|location_quality_code
|longitude|latitude");
// Set properties that affect the behavior of the server
// These properties will override behavior specified in the
// server INI file
// Set the input mode
ab.SetProperty("Input_Mode", 0);
// Only want single output record for each input record...
ab.SetProperty("Keep_multimatch", false);
// 200 foot buffer instead of the default of 50
ab.SetProperty("BUFFER RADIUS", 200);

[Visual Basic]
Try
'Tell AddressBroker what logical Names we are using.
'For this example, we are doing only address standardization and
'geocoding so only GeoStan properties are used.
abclient.SetProperty("INIT_LIST", "Geostan|Geostan_Z9")

'Here we tell AddressBroker the input record format. Although we
'do this only once in the example, it is
'a dynamic property so you could set it at any time, as many
'times as you want.
abclient.SetProperty("INPUTFIELDLIST", "firmname|addressline|lastline")

'This is list of the output fields listed in the output record.

AddressBroker Reference Manual for Windows 152

abclient.SetProperty("OUTPUTFIELDLIST",
"firmname|addressline|lastline|match_code|locationqualitycode|longitude
|latitude")

'Set properties that affect the behavior of the server
'These properties will override behavior specified in the
'server INI file
'Set the input mode
abclient.SetProperty("Input_Mode", "inputnormal")
'Only want single output record for each input record...
abclient.SetProperty("Keep_multimatch", "TRUE")
'200 foot buffer instead of the default of 50
abclient.SetProperty("BUFFER RADIUS", 200)

.NET SetProperty example code
[C#]
// Set client side properties. These properties are typically a subset of
the
// properties listed on the server. If no properties are specified, the
// application can access any of the properties specified in the server INI
file.
try
{
// Tell AddressBroker what logical Names we are using.
// For this example, we are doing only address standardization and
// geocoding so only GeoStan properties are used.

ab.SetProperty("INIT_LIST", "Geostan|Geostan_Z9");
// Here we tell AddressBroker the input record format. Although we
// do this only once in the example, it is
// a dynamic property so you could set it at any time, as many
// times as you want.
ab.SetProperty("INPUTFIELDLIST", "firmname|addressline|lastline");
// This is list of the output fields listed in the output record.
ab.SetProperty("OUTPUTFIELDLIST",
"firmname|addressline|city|state|zip10|match_code|location_quality_code
|longitude|latitude");
// Set properties that affect the behavior of the server
// These properties will override behavior specified in the
// server INI file
// Set the input mode
ab.SetProperty("Input_Mode", 0);
// Only want single output record for each input record...
ab.SetProperty("Keep_multimatch", false);
// 200 foot buffer instead of the default of 50
ab.SetProperty("BUFFER RADIUS", 200);
}
catch (AddressBrokerException abe)
{
// Attempt to set a non-existent property
// Data type mismatch (E.g. set a string property to
// an Integer value)
Console.WriteLine("Set Property failed: " + abe.Message);
}
catch (ArgumentOutOfRangeException rangeArg)
{
// A property was set to an invalid value or
// the property name/id was incorrect.
Console.WriteLine("Argument out of range: " + rangeArg.Message);

AddressBroker Reference Manual for Windows 153

}
catch (ArgumentNullException nullArg)
{
// A Parameter value was null
Console.WriteLine("Null argument: " + nullArg.StackTrace);
}
catch (Exception e)
{
Console.WriteLine("Exception (type " + e.ToString() + "): " + e.Message);
}

[Visual Basic]
Try
'Tell AddressBroker what logical Names we are using.
'For this example, we are doing only address standardization and
'geocoding so only GeoStan properties are used.
abclient.SetProperty("INIT_LIST", "Geostan|Geostan_Z9")

'Here we tell AddressBroker the input record format. Although we
'do this only once in the example, it is
'a dynamic property so you could set it at any time, as many
'times as you want.
abclient.SetProperty("INPUTFIELDLIST", "firmname|addressline|lastline")

'This is list of the output fields listed in the output record.
abclient.SetProperty("OUTPUTFIELDLIST",
"firmname|addressline|lastline|match_code|locationqualitycode|longitude
|latitude")

'Set properties that affect the behavior of the server
'These properties will override behavior specified in the
'server INI file
'Set the input mode
abclient.SetProperty("Input_Mode", "inputnormal")
'Only want single output record for each input record...
abclient.SetProperty("Keep_multimatch", "TRUE")
'200 foot buffer instead of the default of 50
abclient.SetProperty("BUFFER RADIUS", 200)

Catch abe As AddressBrokerException
MsgBox(abe.Message, MsgBoxStyle.Critical, "AB AddressBrokerException")
Exit Sub
Catch nullArg As ArgumentNullException
MsgBox(nullArg.Message, MsgBoxStyle.Critical, "AB
ArgumentNullException")
Exit Sub
Catch rangeArg As ArgumentOutOfRangeException
MsgBox(rangeArg.Message, MsgBoxStyle.Critical, "AB
ArgumentOutOfRangeException")
Exit Sub
Catch er1 As Exception
MsgBox(er1.Message, MsgBoxStyle.Critical, "AB Exception: " &
er1.ToString())
Exit Sub
End Try

AddressBroker Reference Manual for Windows 154

Step 3: Validate properties (optional)

Use the ValidateProperties method to send the property definitions to the server for
validation. When ValidateProperties returns true, the AddressBroker client object
properties are set correctly and are ready for processing. If any property setting is invalid,
an error is generated.

ValidateProperties can be invoked multiple times in your application. For example, you
can initially set and validate a group of properties, then allow the end user to dynamically
select new values and revalidate the settings.

.NET ValidateProperties example
[C#]
// Check to see that properties are valid.
try
{
ab.ValidateProperties();
}
catch (AddressBrokerException abException)
{
Console.WriteLine("Validate Properties exception: " +
abException.Message);
}
catch (Exception e)
{
Console.WriteLine("Validate Properties exception (type " + e.ToString()
+ "): " + e.Message);
}

[Visual Basic]
'Check to see that properties are valid.
Try
abclient.ValidateProperties()
Catch abe As AddressBrokerException
MsgBox(abe.Message, MsgBoxStyle.Critical, "AB AddressBrokerException")
Exit Sub
Catch er1 As Exception
MsgBox(er1.Message, MsgBoxStyle.Critical, "AB Exception: " &
er1.ToString())
Exit Sub
End Try

Step 4: Enter input records and field values

Next, invoke the SetField method to specify the input field values. These input field values
are the same fields values specified initially when setProperty was invoked with the
INPUT_FIELD_LIST property (see “.NET SetProperty example code” on page 152). You must
call SetField for each input field value before calling SetRecord.

AddressBroker Reference Manual for Windows 155

An input value need not be set for every field in a record. In the sample code, an individual
record that did not contain FirmName information could still be processed.

Invoking SetRecord adds the data for the current record to the input record list and
advances the record pointer.

.NET data input example
[C#]
try
{
// Build a few records for enhancement...
// Fill in a record...
// An IllegalArgumentException is thrown when SetField is invoked
// with a bad field name (SetField("xxx", ...))
// or a null value (SetField(...,null))
ab.SetField("firmname", "Centrus");
ab.SetField("AddressLine", "4750 Walnut");
ab.SetField("lastLine", "Boulder, CO");
// SetRecord can throw an AddressBrokerExecption - but only if
// SetField is never invoked.
ab.SetRecord();
// Fill in the next record...
ab.SetField("firmname", "White House");
ab.SetField("AddressLine", "1600 Pennsylvania");
ab.SetField("LastLine", "Washington, DC");
ab.SetRecord();
}
catch (AddressBrokerException abe)
{
Console.WriteLine("SetField or SetRecord exception: " + abe.Message);
}
catch (ArgumentOutOfRangeException rangeArg)
{
// Input value is too long, field is invalid, or field is readonly.
Console.WriteLine("Argument out of range: " + rangeArg.Message);
}
catch (ArgumentNullException nullArg)
{
// Attempt to set a field to null or the field name parameter
// was null.
Console.WriteLine("Null argument: " + nullArg.StackTrace);
}
catch (Exception e)
{
Console.WriteLine("Exception (type " + e.ToString() + "): " + e.Message);
}

[Visual Basic]
'Set input fields -- Submit values for the form
Try
abclient.SetField("firmname", txtFirm.Text)
abclient.SetField("addressline", txtAddress.Text)
abclient.SetField("lastline", txtLastline.Text)
'Set input record
abclient.SetRecord()
Catch abe As AddressBrokerException

AddressBroker Reference Manual for Windows 156

MsgBox(abe.Message, MsgBoxStyle.Critical, "AB AddressBrokerException")
Exit Sub
Catch nullArg As ArgumentNullException
MsgBox(nullArg.Message, MsgBoxStyle.Critical, "AB
ArgumentNullException")
Exit Sub
Catch rangeArg As ArgumentOutOfRangeException
MsgBox(rangeArg.Message, MsgBoxStyle.Critical, "AB
ArgumentOutOfRangeException")
Exit Sub
Catch er1 As Exception
MsgBox(er1.Message, MsgBoxStyle.Critical, "AB Exception: " &
er1.ToString())
Exit Sub
End Try

Step 5: Process records

After all the input data is entered, you are ready to process the records. Use the
ProcessRecords method to send all the data to the server for processing. In the sample
code, GeoStan data files are used to augment address records.

Note: Invoking this method clears the input record buffer, even if it fails.

.NET record processing example
[C#]
try
{
ab.ProcessRecords();
}
catch (AddressBrokerException abe)
{
Console.WriteLine("ProcessRecords exception: " + abe.Message);
}
catch (IOException ioe)
{
Console.WriteLine("ProcessRecord communication exception: " +
ioe.Message);
}
catch (Exception e)
{
Console.WriteLine("Exception (type " + e.ToString() + "): " + e.Message);
}

[Visual Basic]
'Process the record
Try
abclient.ProcessRecords()
Catch ioe As IOException
MsgBox(ioe.Message, MsgBoxStyle.Critical, "AB IOException")
Exit Sub
Catch rangeArg As ArgumentOutOfRangeException
MsgBox(rangeArg.Message, MsgBoxStyle.Critical, "AB
ArgumentOutOfRangeException")
Exit Sub

AddressBroker Reference Manual for Windows 157

Catch er1 As Exception
MsgBox(er1.Message, MsgBoxStyle.Critical, "AB Exception: " &
er1.ToString())
Exit Sub
End Try

Step 6: Retrieve address records and field values

Invoke GetRecord and GetField to retrieve the output data. The sample code in .NET
record and field value retrieval example combines this with a system call to display the
output. It also shows an example of how to retrieve values from a multi-valued field.

In your .NET applications, loop through Steps 4 through 6 of this tutorial each time you
process additional records. You can also repeat Steps 2 and 3 to modify property settings.

.NET record and field value retrieval example
[C#]
try
{
// For each record that comes back...
while (ab.GetRecord() == true)
{

// Print out the basic address
Console.WriteLine("Firm = " + ab.GetField("firmname"));
Console.WriteLine("Addr = " + ab.GetField("addressline"));
Console.WriteLine("City = " + ab.GetField("city"));
Console.WriteLine("State = " + ab.GetField("state"));
Console.WriteLine("ZIP = " + ab.GetField("ZIP10"));
Console.WriteLine("MatchCode = " + ab.GetField("matchcode"));
Console.WriteLine("Location Quality Code = " +

ab.GetField("location_quality_code"));
Console.WriteLine("Longitude = " + ab.GetField("longitude"));
Console.WriteLine("Latitude = " + ab.GetField("latitude"));
Console.WriteLine(" ");

}
}
catch (AddressBrokerException abe)
{
Console.WriteLine("GetRecords/GetField exception: " + abe.Message);
}
catch (ArgumentOutOfRangeException rangeArg)
{
// Input field is invalid
Console.WriteLine("Argument out of range: " + rangeArg.Message);
}
catch (ArgumentNullException nullArg)
{
// Input field is null.
Console.WriteLine("Null argument: " + nullArg.StackTrace);
}
catch (Exception e)
{
Console.WriteLine("GetRecords/GetField exception (type " + e.ToString()
+ "): " + e.Message);
}

AddressBroker Reference Manual for Windows 158

[Visual Basic]
Try
While abclient.GetRecord()

'If this processed, get the output values
sOutFirm = abclient.GetField("firmname")
sOutAddress = abclient.GetField("Addressline")
sOutLastline = abclient.GetField("Lastline")
sOutMatchCode = abclient.GetField("match_code")
sOutLatitude = abclient.GetField("Latitude")
sOutLongitude = abclient.GetField("Longitude")
sOutLocationCode = abclient.GetField("LocationQualityCode")
'and display the results
txtResults.Text = "Address Found: " & vbCrLf & vbCrLf & "Firm: " &

sOutFirm & vbCrLf & "Address: " & sOutAddress & vbCrLf & "Lastline: " &
sOutLastline & vbCrLf & "Latitude: " & sOutLatitude & vbCrLf & "Longitude:
" & sOutLongitude & vbCrLf & "Match Code: " & sOutMatchCode & vbCrLf &
"LocationCode: " & sOutLocationCode
End While

Catch abe As AddressBrokerException
MsgBox(abe.Message, MsgBoxStyle.Critical, "AB AddressBrokerException")
Exit Sub
Catch nullArg As ArgumentNullException
MsgBox(nullArg.Message, MsgBoxStyle.Critical, "AB
ArgumentNullException")
Exit Sub
Catch rangeArg As ArgumentOutOfRangeException
MsgBox(rangeArg.Message, MsgBoxStyle.Critical, "AB
ArgumentOutOfRangeException")
Exit Sub
Catch er1 As Exception
MsgBox(er1.Message, MsgBoxStyle.Critical, "AB Exception: " &
er1.ToString())
Exit Sub
End Try

Step 7: Terminating the program

Invoke the Close method to terminate any active connections to the server.
[C#]
ab.Close();

[Visual Basic]
Try
abclient.Close()
Catch abe As AddressBrokerException
MsgBox(abe.Message, MsgBoxStyle.Critical, "AB AddressBrokerException")
Exit Sub
Catch er1 As Exception
MsgBox(er1.Message, MsgBoxStyle.Critical, "AB Exception: " &
er1.ToString())
Exit Sub
End Try

AddressBroker Reference Manual for Windows 159

AddressBroker .NET methods
The methods described in this chapter are methods of three public classes/interfaces:
AddressBrokerFactory, ABClient, and AddressBrokerException. Within each
class/interface, methods are listed alphabetically.

Some methods are listed as:
MethodName (overloaded)

This indicates there are two or more methods with the same name whose behavior
depends on the parameters it is given. For example, the same method accepts either a
Boolean (bool) type or a string type.

Quick reference

AddressBrokerFactory class

Make

Creates and initializes instances of ABClient subclasses. Must be invoked before any
other method. With the .NET API, you cannot directly instantiate a ABClient instance.
Use the AddressBrokerFactory helper class to create an instance.

ABClient class

Field/data methods

Clear

Clears the input and output record buffers and resets all counter properties to zero.

GetField (overloaded)

Retrieves the value(s) of an output field in the current output record. Invoke iteratively
for fields that contain multiple values.

GetFieldAttribute

Retrieves a field attribute, such as its data type and description.

ResetField

Resets the output field pointer to the first value of an output field.

SetField

Sets an input field value in the current input record.

AddressBroker Reference Manual for Windows 160

GetRecord

Retrieves the record and advances the output record pointer.

ResetRecord

Resets the output record pointer to the first record of the output record buffer.

SetRecord

Adds the data for the current record to the input record buffer and advances the input
record pointer to the next empty record.

Property methods

GetProperty (overloaded)

Retrieves the value of an input or output property.

GetPropertyAttribute (overloaded)

Retrieves a property attribute, such as its name, data type, and description.

AddressBroker Reference Manual for Windows 161

SetProperty (overloaded)

Sets the value of a property.

ValidateProperties

Validates properties for consistency and completeness. This method must be invoked
after SetProperty and before invoking SetField.

Processing methods

ProcessRecords

Processes a set of one or more address records.

LookupRecord

Processes a single incomplete address record.

Termination method

Close

Closes any active connections to a server.

AddressBrokerException class

Status code method

GetStatusCode

Retrieves the status code of a thrown exception.

AddressBroker Reference Manual for Windows 162

AddressBrokerFactory class

Use the AddressBrokerFactory class to create concrete instances of the various subclasses
of ABClient. The factory has only one method, Make.

Make

Creates instances of ABClient subclasses.

Syntax
ABClient AddressBrokerFactory.Make
(string in_hostlist,
 string in_transport,
 string in_user,
 string in_password)

Arguments

in_hostlist A pipe (|)-delimited list of servers and associated parts in the
form “host1:port1 | host2:port2 | ...”. Input.

in_transport Case-insensitive string that specifies the network protocol
AddressBroker uses.

in_user A valid user name. Input.

in_password A valid user’s password. Input.

Return Values

None.

Prerequisites

None.

Alternates

None.

Notes

The client transparently switches between servers if it has a problem establishing
communication with its current server. That is, when the client executes a command that
includes a server transaction, it switches servers if there is no response from the current
server or a transaction fails.

AddressBroker Reference Manual for Windows 163

An AddressBroker client uses the first server specified in in_hostlist until the server fails,
at which point it switches to the next server listed in in_hostlist. The client continues to
use this secondary server until it—the secondary server—fails. After a failed server is
operational, it again becomes available to the client. However, the client does not switch
back unless its current server fails. When a client searches for a server and encounters the
end of in_hostlist, it continues searching from the beginning of the list.

On a per-transaction basis, the client tries each server in turn until it finds an operational
server. If it fails to find a server, the operation fails.

When listing multiple servers, it is extremely important that they all service client requests
identically. To ensure predictable results, make sure that the server INI files on each host
use the same initialization settings.

There are two valid protocols for the Make method: SOCKET and NOCONNECT. Both
SOCKET and NOCONNECT make standard sockets connections to the AddressBroker
server. However, the SOCKET protocol actually makes a connection to the server and gets
a list of properties as set by the Server INI file. The NOCONNECT protocol does not make
that connection. NOCONNECT is appropriate for production environments where all
processing is defined programmatically, and not by the end user.

An InstantiationException is thrown when an AddressBroker instance cannot be created.

An ArgumentNullException , ArgumentOutOfRangeException, or AddressBrokerException
may be thrown from this method.

Example 1
// Socket protocol using the computer name
ab = AddressBrokerFactory.Make (“primary:1234 | secondary:1235”,
“socket”, “MyLogon”, “MyPassword”) ;

Example 2
// Socket protocol using an URL
ab = AddressBrokerFactory.Make (“centrus.com:1234 | centrus-
software.com:1235”, “socket”, “MyLogon”, “MyPassword”) ;

Example 3
// Socket protocol using an IP address
ab = AddressBrokerFactory.Make (“204.180.129.200:1234 |
209.38.36.44:1235”, “socket”, “MyLogon”, “MyPassword”) ;

AddressBroker Reference Manual for Windows 164

ABClient class

The ABClient interface provides all public methods required by the user. It is not possible to
make a concrete ABClient instance. Instead, use the AddressBrokerFactory class to create
an instance of ABClient.

Clear

Clears input and output record buffers and resets counter properties.

Syntax
bool ABClient.Clear ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

None.

Alternates

None.

Close

Forces any active connection to a server to close.

Syntax
void ABClient.Close ()

Parameters

None.

Return Values

None.

AddressBroker Reference Manual for Windows 165

Prerequisites

Make

Alternates

None.

Notes

The instance is no longer usable after invoking Close.

Failure to invoke Close may prevent your process from exiting when expected due to
monitor threads persisting beyond the lifetime of your program's other threads.

GetField (overloaded)

Retrieves output field value(s) from the current output record.

Syntax
string ABClient.GetField (

string in_FieldName)
string ABClient.GetField (

string in_FieldName,
string in_LogicalName)

Parameters

in_FieldName A valid, fully specified field name listed in the
OUTPUT_FIELD_LIST property (see the examples for this
function). The property name is not case sensitive, and spaces
and underscores are ignored. Input.

in_LogicalName The logical name required by the value of in_FieldName. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

Return Values

Single value fields: returns the field value.

Multi-value fields: returns the current value and advances the pointer to the next
value in the field.

Returns null when no values are found.

AddressBroker Reference Manual for Windows 166

Prerequisites

GetRecord

Alternates

None.

Notes

The GetField method retrieves a field value from the current output record. Invoke GetField
iteratively for multi-valued fields. Use the ResetField method to reset the field to its first
value. To retrieve single value fields more than once, you must invoke ResetField.

An ArgumentNullException is thrown when:

• in_FieldName is null or the empty string (“”).

An ArgumentOutOfRangeException is thrown when:

• in_FieldName and/or in_LogicalName are invalid.
• in_FieldName is not in the OUTPUT_FIELD_LIST property.

An AddressBrokerException is thrown when:

• no output records are available.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

Example1
//Example using a field that does not require a logical name.
string fieldvalue = ab.GetField ("CITY");

Example 2
//Example using a field with its logical name in brackets.
string fieldvalue = ab.GetField ("PolygonName[COUNTIES]");

Example 3
//Example using a field with its logical name as a separate parameter.
string fieldvalue = ab.GetField ("PolygonName", "COUNTIES");

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AddressBroker Reference Manual for Windows 167

GetFieldAttribute

Retrieves a field attribute.

Syntax
string ABClient.GetFieldAttribute (

string in_FieldName,
int in_FieldIOType,
int in_AttributeId)

Parameters

in_FieldName A valid field name listed in the INPUT_FIELD_LIST or
OUTPUT_FIELD_LIST property. The property name is not
case sensitive, and spaces and underscores are ignored. Do
not associate logical names with field names when using this
method. Input.

in_FieldIOType A symbolic constant identifying the field name as an input field
(ABConst.AB_FIELD_INPUT) or an output field
(ABConst.AB_FIELD_OUTPUT). Input.

in_AttributeId A symbolic constant identifying the attribute to retrieve. Input.

Return Values

Returns the value of the field’s attribute. Integer values are returned as strings.

Prerequisites

SetField

ValidateProperties

Alternates

None.

Notes

GetFieldAttribute retrieves a field attribute’s value. These are general attributes, not
specific to a record. Valid attribute constants below are all public static members of the
ABConst class.

AddressBroker Reference Manual for Windows 168

Attribute Values

AB_FIELD_DATA_TYPE

“N” (numeric), “C” (character).

AB_FIELD_DECIMALS

Number of decimal places, if numeric.

AB_FIELD_DESCRIPTION

Short (32-character) description of field.

AB_FIELD_HELP

Long (255-character) field description. This is not
implemented for all fields.

AB_FIELD_LENGTH

Field width.

AB_FIELD_NEEDS_LOGICAL_NAME

“0” (zero) = No logical name permitted.
“G” = A GeoStan logical name required.
“S” = A Spatial+ logical name required.
“D” = A DemoLib logical name required.
“C” = A GeoStan Canada logical name required.
“L” = A GDL logical name required.

AB_FIELD_NUM_VALUES

Maximum number of unique values possible for field.

An ArgumentNullException is thrown when:

• in_FieldName is null or the empty string (“”).

An ArgumentOutOfRangeException is thrown when:

• in_FieldName is invalid.
• in_FieldIOType is not in AB_INPUT_FIELD or AB_OUTPUT_FIELD (global .NET

constants).
• in_FieldIOType contains an invalid value.
• in_AttributeId contains an invalid value.

An AddressBrokerException is thrown when:

• ValidateProperties is not invoked prior to GetFieldAttribute.
• There is a communication problem with the server.

Example
try
{

AddressBroker Reference Manual for Windows 169

 ab.ValidateProperties();
 string fieldattr = ab.GetFieldAttribute
 ("CITY",ABConst.AB_FIELD_INPUT, ABConst.AB_FIELD_LENGTH);
 fieldattr = ab.GetFieldAttribute ("PolygonName",
ABConst.AB_FIELD_OUTPUT,ABConst.AB_FIELD_DATA_TYPE);
}

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

GetProperty (overloaded)

Retrieves a property value.

Syntax
Object ABClient.GetProperty (

string in_PropName)
Object ABClient.GetProperty (

int in_PropId)

Parameters

in_PropName A valid property name. The property name is not case
sensitive. Spaces and underscores are ignored. Input.

in_PropID A valid property symbolic constant. Input.

Return Values

Returns the property value. The returned value Object is of type String, Integer,
or Boolean, corresponding to the property’s data type. Cast the return value to
the appropriate type.

Prerequisites

None.

Alternates

None.

Notes

The GetProperty methods retrieve a property value.

AddressBroker Reference Manual for Windows 170

An ArgumentNullException is thrown when:

• in_PropName is null or the empty string (“”).

An ArgumentOutOfRangeException is thrown when:

• in_PropName and/or in_PropID are invalid.

Example
bool propvalue = (bool)ab.GetProperty (“MIXED CASE”);
string propvalue = (string)ab.GetProperty (ABConst.AB_INIT_LIST);

See Also

See Chapter 13 Properties for more information about properties.

GetPropertyAttribute (overloaded)

Retrieves a property attribute.

Syntax
string ABClient.GetPropertyAttribute (

string in_PropName,
int in_AttributeId)

string ABClient.GetPropertyAttribute (
int in_PropID,
int in_AttributeId)

Parameters

in_PropName A valid property name. The property name is not case
sensitive. Spaces and underscores are ignored. Input.

in_PropID A valid property symbolic constant. Input.

in_AttributeId A symbolic constant of the attribute to retrieve. Input.

Return Values

Returns the value of the attribute (see the examples for this function).

Prerequisites

SetProperty if you want client property information.

Alternates

None.

AddressBroker Reference Manual for Windows 171

Notes

An ArgumentNullException is thrown when:

• in_PropName or in_PropID is null or the empty string (“”).

An ArgumentOutOfRangeException is thrown when:

• in_PropName or in_PropID is invalid.
• in_AttributeId contains an invalid value.

To receive information about properties set on the server, call Make. To get server property
information, call GetPropertyAttribute before setting any properties in the client code. To
receive information about client properties, call GetPropertyAttribute after calling
SetProperties.
Valid attribute constants below are all public static members of the ABConst class.

Attribute Values

AB_PROPERTY_DATA_TYPE

“N” (Integer), “B” (Boolean), or “C” (String).

 AB_PROPERTY_DEFAULT_VALUE
Default property value.

AB_PROPERTY_DESCRIPTION

Short (100-character) description of property.

AB_PROPERTY_ID

Property ID.

AB_PROPERTY_LENGTH

Length of property value.

AB_PROPERTY_NAME

Property name.

AB_PROPERTY_READ_ONLY

“1” property is read-only.
“0” property is read/write.

Example1
//Example using the Property Name
string propattr = ab.GetPropertyAttribute ("MIXED CASE",
ABConst.AB_PROPERTY_DATA_TYPE);

Example 2
//Example using the Property ID
string propattr = ab.GetPropertyAttribute (ABConst.AB_INIT_LIST,
ABConst.AB_PROPERTY_LENGTH);

AddressBroker Reference Manual for Windows 172

See Also

See Chapter 13 Properties for more information about properties.

AddressBroker Reference Manual for Windows 173

GetRecord

Advances the pointer to the next record in the output record buffer.

Syntax
bool ABClient.GetRecord ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

ProcessRecords

Alternates

None.

Notes

The first time GetRecord is invoked, it sets a pointer in the output record buffer to the first
output record. Subsequent calls to GetRecord advance the pointer. When no further records
are found, false is returned.

Use the GetField method to retrieve values from individual record fields. Use the
ResetRecord method to reset the output record pointer to the first output record.

Possible exceptions thrown in case of error include: AddressBrokerException, IOException,
and SocketException.

Example
while (ab.GetRecord())
{
for (int i = 0; i < fieldnames.length; ++i)
{
string value = ab.GetField(fieldnames[i]);
}
}

AddressBroker Reference Manual for Windows 174

LookupRecord

Processes a single incomplete U.S. address record or performs a reverse lookup on a
Canadian postal code.

Syntax
int ABClient.LookupRecord ()

Parameters

None.

Return Values

The OUTPUT_FIELD_LIST property defines the fields populated by LookupRecord,
and the return codes listed below describe the search outcome. Individual codes
are returned only when the relevant fields are included in OUTPUT_FIELD_LIST. A
return value of zero (0) indicates an internal failure.

Notes

Valid attribute constants below are all public static members of the ABConst class.

Return Codes

AB_LOOKUP_ADDRESS_LINE_INCOMPLETE

For a U.S. address, the firm name or unit number could not be
resolved. Multiple incomplete records returned. The user can
be prompted to submit more information. The most useful
fields for resolving a match generally are FirmName,
HighUnitNumber, LowUnitNumber, MatchCode, and UnitType.

Other helpful fields include AddressLine, AddressLine2,
CarrierRoute, CountyName, FIPSCountyCode,

GovernmentBuildingIndicator, HighEndHouseNumber,

LACSAddress, LastLine, LowEndHouseNumber,

PostfixDirection, PrefixDirection, RoadClassCode,

SegmentBlockLeft, SegmentBlockRight, State,

UrbanizationName, USPSRangeRecordType, ZIP,

ZIPCarrtSort, ZIPCityDelivery, ZIPClass, ZIPFacility,

and ZIPUnique.

For a Canadian postal code, the input Postal Code is resolved
to a range of possible addresses that contain a single street
number. The street number suffix or unit number values will
vary over the range.

AddressBroker Reference Manual for Windows 175

AB_LOOKUP_LAST_LINE_NOT_FOUND

For a U.S. address, multiple incomplete records returned; did
not resolve LastLine. Iteratively invoke GetRecord to retrieve
the possible matches. Only the following output fields are
returned: MatchCode, CITY, State, ZIP, and ZIPFacility.
For a Canadian postal code, this return code indicates that the
input postal code was not found in the CPC data and is invalid.

AB_LOOKUP_MULTIPLE_MATCH

For a U.S. address, the address resolved to multiple match.
Multiple complete address records returned. Iteratively invoke
GetRecord to retrieve possible matches. For a Canadian
postal code, the postal code resolved to a range of possible
addresses that vary over the street.

AB_LOOKUP_NOT_FOUND

The address could not resolve to match or possible match. No
records returned. Provide a more complete address. (This
return code is not used for Canada.)

AB_LOOKUP_SUCCESS

For a U.S. address, a complete single address was matched
and returned. (This return code is not used for Canada.)

AB_LOOKUP_TOO_MANY_CITIES

No records returned. An incomplete LastLine matched over
100 cities. Provide a more complete address. (This return
code is not used for Canada.)

Prerequisites

None.

Alternates

SetRecord

Notes

LookupRecord processes a single input record and should be used only when address
information is insufficient for standardization. To process single or multiple records
containing complete addresses, use ProcessRecords.

Minimally, address information for LookupRecord must include a street number, a partial
street name, and/or valid LastLine information. For Canada, a valid postal code is required
and will return a single address or a range of addresses.

AddressBroker Reference Manual for Windows 176

LookupRecord is most useful in interactive programs, when an application may have to
invoke LookupRecord iteratively to find a match for an incomplete address. In client/server
and Internet environments, the record is transferred across the network with each call to
LookupRecord. The method does not return until the record is processed. When
LookupRecord processes an address record and fails to find an exact match, it does an
extensive search to find cities and streets that are possible matches.

The INPUT_FIELD_LIST property specifies the list of fields passed to LookupRecord.
Generally, provide at least FirmName, AddressLine, and LastLine fields as input to
LookupRecord. For Canada, a valid Canadian Postal Code is the only input, and it is set
using the PostalCode input field. Only one Postal Code can be processed at a time.

The OUTPUT_FIELD_LIST property specifies the list of possible fields returned.

The MAXIMUM_LOOKUPS property limits the number of multiples—possible matches—that are
returned by LookupRecord. The upper limit of MAXIMUM_LOOKUPS is 100. For a Canadian postal
code, if the MAXIMUM_LOOKUPS is set to 100, AddressBroker increases the MAXIMUM_LOOKUPS to
200.

Retrieve the list of possible matches using a ‘while (GetRecord) do GetField’ loop. No
records are returned when the return value of LookupRecord is AB_LOOKUP_NOT_FOUND
or AB_LOOKUP_TOO_MANY_CITIES.

Precisely recommends using ProcessRecords instead of LookupRecord.

An IOException is thrown if the client receives a corrupted message, for example, when
there is a failure in the network transport layer.

AddressBroker throws an AddressBrokerException when:

• Severe problems occur when processing a user request.
• A time-out occurs.
• There are logic errors.

Example

In an interactive application, a user submits a partial address to LookupRecord. The return
code is AB_LOOKUP_LAST_LINE_NOT_FOUND. For a U.S. address, this code indicates that
the user did not enter enough information for LookupRecord to resolve the city, state, or ZIP
Code. The application prompts the user to select from the list of possible cities and states
returned by LookupRecord. The user selects the necessary information and resubmits the
address to LookupRecord. For a Canadian postal code, this return code indicates that the
input postal code was not found in the CPC data and is invalid.

This time the return code is AB_LOOKUP_ADDRESS_LINE_INCOMPLETE. The user
resolved the last line problem, but the return code indicates the address line could be more
specific. For a U.S. address, it is missing information on the firm name or unit number

AddressBroker Reference Manual for Windows 177

(suite, apartment, etc.). The application can prompt the user to select from the list of
possibilities returned by this call to LookupRecord. The user enters the additional information
and resubmits the address to LookupRecord, and AB_LOOKUP_SUCCESS is returned. For a
Canadian postal code, the AB_LOOKUP_ADDRESS_LINE_INCOMPLETE code indicates that
the input Postal Code resolved to a range of possible addresses that contain a single street
number. The street number suffix or unit number values will vary over the range. For
example, a Canadian postal code of T3C 2K7 could resolve to 123 A - 123 G Maple Street
(when the street suffix varies) or 123 Maple Street Unit 1-100 (when the unit number
changes). A valid postal code for one address submitted to lookupRecord returns
AB_LOOKUP_SUCCESS.

When the next address is entered, LookupRecord returns the status code
AB_LOOKUP_MULTIPLE_MATCH. This indicates multiple complete matches were found.
For a U.S. address, the user may then be prompted to select from the list of possible
matches. The selected address is resubmitted to LookupRecord to ensure that it is entirely
correct, and that AB_LOOKUP_SUCCESS is returned. For a Canadian postal code, the
AB_LOOKUP_MULTIPLE_MATCH code indicates a postal code that resolved to a range
of possible addresses that vary over the street. For example, a Canadian postal code could
resolve to 100-120 Elm, Calgary, AB or 150-165 Maple, Calgary, AB.

ProcessRecords

Processes a set of one or more address records.

Syntax
void ABClient.ProcessRecords ()

Parameters

None.

Return Values

None.

Prerequisites

SetRecord

Alternates

None.

AddressBroker Reference Manual for Windows 178

Notes

Each record should contain enough address information for standardization. For records
containing incomplete addresses, use LookupRecord, which progressively returns address
choices for one input record at a time.

The method call does not return until all of the records are processed.

An IOException is thrown if the client receives a corrupted message; for example, when
there is a failure in the network transport layer.

AddressBroker throws an AddressBrokerException when:

• severe problems occur when processing a user request.
• a time-out occurs.
• there are logic errors.

See Also

See Chapter 13 Properties for more information about properties.

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

ResetField

Resets the output field pointer to the first value of a multi-valued output field.

Syntax
bool ABClient.ResetField (

string in_FieldName,
string in_LogicalName)

Parameters

in_FieldName A valid field name listed in the OUTPUT_FIELD_LIST property.
Some field names require a logical name. The logical name
may be appended to in_FieldName in brackets, or passed in
the in_LogicalName parameter (see the examples for this
function). The property name is not case sensitive, and spaces
and underscores are ignored. Input.

in_LogicalName The logical name required by the value of in_FieldName. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

AddressBroker Reference Manual for Windows 179

Return Values

true if successful, false if unsuccessful.

Prerequisites

GetField

Alternates

None.

Notes

The output field pointer is reset to the first value of the output field.

ResetField returns false when in_FieldName is not found.

An ArgumentNullException is thrown when:

• in_FieldName is null or the empty string (“”).

An ArgumentOutOfRangeException is thrown when:

• A logical name is provided in both in_FieldName and in_LogicalName.

If GetField is called with the logical name in brackets, ResetField should be called with the
logical name in brackets. Similarly, if the logical name is passed as a separate parameter in
GetField, then ResetField must also use separate parameters. This is for consistency
purposes only; does not cause an error.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

Example 1
// Example using field name with its logical name in brackets.
while (ab.GetField ("polygonName[COUNTIES]")==true)

{
...
}
ab.ResetField ("PolygonName","PolygonName[Counties]");

Example 2
// Example using field name with its logical name as separate
parameter.
while (ab.GetField ("polygonName", "COUNTIES")==true)
{
...
}
ab.ResetField ("PolygonName", "Counties");

AddressBroker Reference Manual for Windows 180

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AddressBroker Reference Manual for Windows 181

ResetRecord

Resets output record pointer to the first record in the output record buffer.

Syntax
bool ABClient.ResetRecord ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

GetField

Alternates

None.

AddressBroker Reference Manual for Windows 182

SetField

Sets an input field value in the current input record.

Syntax
void ABClient.SetField (

string in_FieldName,
string in_FieldValue)

Parameters

in_FieldName A valid field name listed in the INPUT_FIELD_LIST property. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

in_FieldValue The string value to assign to the field. Maximum string length
is determined by the AB_FIELD_LENGTH field attribute. Input.

Return Values

None.

Prerequisites

SetProperty

Alternates

None.

Notes

The RECORD_DELIMITER, FIELD_DELIMITER, and VALUE_DELIMITER properties have default
values of line feed, tab, and CTRL-A, respectively. If your data contains any of these
characters, you must reset the appropriate property to a different character. In addition,
your data may not contain the NULL character.

An ArgumentNullException is thrown when:

• in_FieldName is null or the empty string (“”).
• in_FieldValue is null.

An ArgumentOutOfRangeException is thrown when:

• in_FieldName is invalid.
• in_FieldName is not in the INPUT_FIELD_LIST property.
• The length of in_FieldValue is > 256 characters.

AddressBroker Reference Manual for Windows 183

An AddressBrokerException is thrown when:

• Properties were set (via SetProperty) but were not validated (via
ValidateProperties).

Example
ab.SetField (“AddressLine”, “123 Main”);
ab.SetField (“LastLine”, “Anytown, NY”);

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

SetProperty (overloaded)

Assigns a property value.

Syntax
void ABClient.SetProperty (

string in_PropName,
bool in_bPropValue)

void ABClient.SetProperty (
string in_PropName,
bool in_bPropValue)

void ABClient.SetProperty (
string in_PropName,
string in_sPropValue)

void ABClient.SetProperty (
string in_PropName,
Integer in_iPropValue)

void ABClient.SetProperty (
string in_PropName,
int in_iPropValue)

void ABClient.SetProperty (
int in_PropID,
bool in_bPropValue)

void ABClient.SetProperty (
int in_PropID,
bool in_bPropValue)

void ABClient.SetProperty (
int in_PropID,
string in_sPropValue)

void ABClient.SetProperty (
int in_PropID,
Integer in_iPropValue)

void ABClient.SetProperty (
int in_PropID,
int in_iPropValue)

AddressBroker Reference Manual for Windows 184

Parameters

in_PropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_PropID The valid symbolic constant of the property being set. Input.

in_bPropValue A Boolean object or Boolean value to assign to the property.
Input.

in_sPropValue A string value to assign to the property. Input.

in_iPropValue An integer object or integer value to assign to the property.
Input.

Return Values

None.

Prerequisites

AddressBrokerFactory.Make

Alternates

None.

Notes

The specific SetProperty method to use depends on the data type of the property you are
setting.

An ArgumentNullException exception is thrown when:

• in_PropName or in_PropID are null or invalid.
• The property value is null.

An AddressBrokerException is thrown when:

• The data type of the property does not correspond to the data type of the value.

Example
ab.SetProperty (“MIXED CASE”, true);
ab.SetProperty (ABConst.AB_INIT_LIST, “GEOSTAN |COUNTIES”);

See Also

See Chapter 13 Properties for more information about properties.

AddressBroker Reference Manual for Windows 185

SetRecord

Adds data for the current record to the input record buffer and advances the input record
pointer to the next empty record in the buffer.

Syntax
void ABClient.SetRecord ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

SetField

Alternates

None.

AddressBroker Reference Manual for Windows 186

ValidateProperties

Validates properties for consistency and completeness.

Syntax
void ABClient.ValidateProperties ()

Parameters

None.

Return Values

true if successful, false if unsuccessful.

Prerequisites

SetProperty

Alternates

None.

Notes

The ValidateProperties method verifies the values of initialization and processing control
properties to ensure a complete and compatible set of values are available to
AddressBroker. Call this method after one or more properties have been set and before
calling SetField or any processing methods.

When ValidateProperties returns true, it indicates all properties have been successfully
validated and that AddressBroker is ready to process records. In some cases, all properties
can be validated in a single method call.

See Also

See Chapter 13 Properties for more information about properties.

AddressBroker Reference Manual for Windows 187

AddressBrokerException class

AddressBroker methods throw an object of this class to indicate run-time, logical, or
processing errors.

GetStatusCode

Retrieves the Status Code from a thrown exception.

Syntax
long AddressBrokerException.GetStatusCode ()

Parameters

None.

Return Values

Returns the 10-digit integer status code.

Prerequisites

None.

Alternates

None.

Notes

GetStatusCode is available only while an exception object is accessible (in scope).

See Also

See “GeoStan location codes” on page 433 for a description of status codes. See
“AddressBroker .NET exceptions” on page 188 for more information on this exception
class.

AddressBroker Reference Manual for Windows 188

AddressBroker .NET exceptions
In the .NET API, many AddressBroker methods have no return codes as compared to the C
and C++ APIs. Instead, your application must use exception handling. Exceptions are listed
in the method syntax statements.

The AddressBroker .NET API throws the following classes of exceptions:

• Centrus.Addressbroker.AddressBrokerException – a general run time exception.
• System.ArgumentNullException – a parameter to a method is null or the empty string (“

“).
• System.ArgumentOutOfRangeException – a parameter to a method is invalid or out of

range.
• System.IO.IOException – the output stream from a request to the server was corrupted.

AddressBrokerException class

An object of this class is thrown by the methods of the ABClient class to indicate a run-time,
logical, or processing error. This exception class extends the System.Exception by adding a
status code and message. AddressBrokerException handling example shows an
AddressBrokerException try block example. See “GetStatusCode” on page 187 for
information about the GetStatusCode method.

 AddressBrokerException handling example
...
 try {
 myAddressBrokerInstance.GetField(“NONSENSE NAME”);
 catch(AddressBrokerException abException) {
 // Unknown field name error
 Console.WriteLine(“An exception occurred:\n” + abException);
 Console.WriteLine(“ErrorCode = “ + abException.GetStatusCode());
 }
...

ArgumentNullException class

Parameters passed to methods are checked for correctness. ArgumentNullException
handling example shows an example that checks for an ArgumentNullException.

ArgumentNullException handling example
...
 try {
 myAddressBrokerInstance.GetField(null);
 catch(ArgumentNullException illArgExcept) {
 // Unknown field name error
 Console.WriteLine(illArgExcept);
 }

AddressBroker Reference Manual for Windows 189

...

IOException class

AddressBroker throws an exception of this class when the output stream received from a
ProcessRecords or a LookupRecord call is corrupted.

10 – C API

In this chapter

Accessing the AddressBroker C libraries 190
AddressBroker C tutorial 191
AddressBroker C functions 196
Errors, messages, and status logs 226

This chapter describes the C API to AddressBroker in detail.

This chapter provides a tutorial using the AddressBroker C API. The
tutorial shows you how to use most of AddressBroker’s functionality,
yet is general enough that you can modify it for other uses. A complete
function reference follows the tutorial. The final section of this chapter
discusses error handling.

The naming convention for AddressBroker C API functions is
QABFunctionName. All C functions use this naming convention.

Accessing the AddressBroker C
libraries
To use the AddressBroker library in a client application, you must
include the appropriate header file in your application source code
files:

#include "ABapi.h" // C API

You must also use the appropriate syntax for creating an
AddressBroker handle or instance:

// C API

AddressBroker Reference Manual for Windows 191

ab = QABInit (AB_CLIENT, “primary:1234 |
secondary:1235”, “socket”, “MyLogon”, “MyPassword”,
“MyInitFile”);

Finally, you must include the AddressBroker import library in the link step of your build.

Windows platforms

Link to the AB.lib import library, which causes your application to use AB.dll. For your
application to execute properly, this DLL must be found in your execution path environment
variable.

UNIX platforms

Link to libab.sl or libab.so, which causes your application to dynamically bind to the
AddressBroker library. For your application to execute properly, this shared library must be
found in your shared library path environment variable: SHLIB_PATH for HP-UX, or
LD_LIBRARY_PATH for most other UNIX systems.

Note: To process Canadian addresses, NCODEDATA and LD_LIBRARY_PATH for Solaris or
SHLIB_PATH for HP-UX must be set. See the GeoStan Canada Reference Manual for
more information.

AddressBroker C tutorial
This section describes the steps necessary to develop an AddressBroker application using
the C API. The example shows some basic C sample code that performs address record
enhancement. It uses the firm name and address fields from Precisely address records as
input. This tutorial standardizes the address data and augments it with city, state, and 9-digit
ZIP Code information from the GeoStan data directory. Then it retrieves the name and
status of the geographic polygon where the address is located using a Spatial+ data file.

Sample C code (Console.c) is located in the Samples subdirectory.

Step 1: Create and initialize the object

To begin, link your application to the AddressBroker import library. Your application must
include the “ABapi.h” header file, which defines AddressBroker C function prototypes. This
header file also includes “ABtypes.h,” which defines AddressBroker data types. You do not
need to include “ABtypes.h” in your source code.

C program initialization
/* Centrus AddressBroker includes. */
#include "ABapi.h"
/* A sample MAIN function. */

AddressBroker Reference Manual for Windows 192

main ()
{
 ABId ab;
/* Specify the initialization file */
 char* initfile = "C:\Program Files\Centrus\abclient.ini";
/* If client, specify... */
 /* ...the machine name where the server is running */
 char* hostname = "MyServer";
 /* ...the network transport protocol */
 char* transport = "Socket";
 /* ...the logon name where the server is running */
 char* logon = "MyLogon";
 /* ...the password where the server is running */
 char* password = "MyPassword";
 unsigned long status_code;
 char status_msg[2048];

/* If the application is executing as a client: */
 ab = QABInit (AB_CLIENT, hostname, transport, logon, password,
inifile);
 QABGetStatus (ab, status_code, status_msg, 2048);
 if (status_code)
 {
 printf (status_msg);
 /* handle status condition */
 ...
 }

Step 2: Set properties

You should assign a minimal set of properties in your client application. For a detailed
discussion, see Chapter 5, "Client Applications".

Set logical names and paths on the server. The logical names the client uses must match
those set on the server. In the sample code shown in
“C QABSetProperty example” on page 193 the logical names GEOSTAN, GEOSTAN_Z9, and
COUNTIES refer to a GeoStan data directory, a GEOSTAN ZIP Code file, and a Spatial+
polygon file, respectively. Next, tell AddressBroker to use the FirmName, AddressLine, and
LastLine field values from each input record. In this example, the FirmName and
AddressLine fields are enhanced with City, State, and ZIP10 information from the GeoStan
data file. PolygonName and PolygonStatus are also retrieved from the COUNTIES file.

You can set other properties in the client. In the sample code, KEEP_MULTIMATCH and
BUFFER_RADIUS are set. See Chapter 13, "Properties" for a detailed discussion.

C property reference syntax
/* setting a property using its string name */

sprintf(buffer, "%d", TRUE);
QABSetPropertyStr (ab, "MIXED CASE", buffer);

/* setting a property using its property ID */

AddressBroker Reference Manual for Windows 193

sprintf(buffer, "%d", TRUE);
QABSetPropertyID (ab, AB_MIXED_CASE, buffer);

/* setting a pre-defined property */

sprintf(buffer, "%d", AB_INPUT_PARSED);
QABSetPropertyStr(ab, "INPUT MODE", buffer);

C QABSetProperty example
/* Tell Centrus AddressBroker what logical names to use. These must match
the logical names set in the server .ini file. */

 QABSetPropertyStr(ab, "INIT_LIST", "GEOSTAN | GEOSTAN_Z9 |
COUNTIES");
/* Tell Centrus AddressBroker what input to use. We do this only once in
the example; it is a dynamic property, you can set it at any time, as many
times as you want. */
 QABSetPropertyStr(ab, "INPUT_FIELD_LIST",
 "Firmname| AddressLine| LastLine");
/* List the output fields we expect returned. */
 QABSetPropertyID(ab, AB_OUTPUT_FIELD_LIST,
"Firmname|AddressLine|City|State|Zip10|PolygonName[COUNTIES]|
PolygonStatus[COUNTIES]");
// Set some other properties that affect server behavior.
 /* Keep only one output record for each input record.*/
 QABSetPropertyStr(ab, "KEEP_MULTIMATCH", FALSE);
 /* Set a 200 foot buffer instead of using the default. */
 QABSetPropertyStr(ab, "BUFFER_RADIUS", 200);

Step 3: Validate properties (optional)

Use the QABValidateProperties function to send the property definitions to AddressBroker
for validation. When QABValidateProperties returns TRUE, the AddressBroker client object
initializes and is ready for processing. If any property setting is invalid, AddressBroker
generates an error. Use QABGetStatus to retrieve error messages in the event
QABValidateProperties does not return successfully.

All AddressBroker properties must be set and validated before data can be input or
processed. In client mode, calling QABValidateProperties results in a server transaction.

C QABValidateProperties example
/* Check to see that properties are valid. */
if (!QABValidateProperties (ab))
{
 unsigned long status_code;
 char status_msg[2048];
 QABGetStatus (ab, status_code, status_msg, 2048);
 ...
}

QABValidateProperties can be called multiple times in your application. For example, you
can initially set and validate a group of properties, then select new values and revalidate the
settings.

AddressBroker Reference Manual for Windows 194

Step 4: Enter input records and field values

Next, use the QABSetField function call to specify the input field values. Note that these are
the same fields you specified initially with the INPUT_FIELD_LIST property in the
QABSetPropertyID or QABSetPropertyStr function call. (See “C QABSetProperty example”
on page 193.)

The QABSetRecord function call adds the data for the current record to the input record list
and advances the record pointer.

An input value need not be set for every field in a record. In this example, an individual
record that did not contain FirmName information could still be processed.

C data input example
/* Enter a few records for processing.
 Fill in a record... */
 QABSetField(ab, "FirmName", "Centrus");
 QABSetField(ab, "AddressLine", "4750 Walnut");
 QABSetField(ab, "LastLine", "Boulder, CO");
 /* SetRecord will result in an error if SetField is never called. */
 QABSetRecord(ab);
 /* Fill in the next record... */
 QABSetField(ab, "FirmName", "White House");
 QABSetField(ab, "AddressLine", "1600 Pennsylvania");
 QABSetField(ab, "LastLine", "Washington, DC");
 QABSetRecord(ab);

Step 5: Process records

After all the input data has been entered, you are ready to process the records. Use the
QABProcessRecords function to process records. In client mode, this sends all the data to
the server for processing.

Note: This function call clears the input record buffer, even if the call fails.

C record processing example
if (!QABProcessRecords (ab))
{
 unsigned long status_code;
 char status_msg[2048];
 QABGetStatus (ab, status_code, status_msg, 2048);
 ...
}

Step 6: Retrieve address records and field values

Use the QABGetRecord and QABGetField function calls to retrieve the output data. C data
retrieval example uses printf to display the output.

AddressBroker Reference Manual for Windows 195

In your C applications, loop through Steps 4 through 6 of this tutorial each time you process
additional records. You can also repeat Steps 2 and 3 to modify property settings.

C data retrieval example
char firmname[41];
char addressline[61];
char city[29];
char state[3];
char zip10[11];
char polygonname[128];
char polygonstatus[2];
/* For each record that comes back... */
 while (QABGetRecord (ab))
 {
 /* Get address data. */
 QABGetField(ab, "FirmName", firmname, 41);
 QABGetField(ab, "AddressLine", addressline, 61);
 QABGetField(ab, "City", city, 29);
 QABGetField(ab, "State", state, 3);
 QABGetField(ab, "ZIP10", zip, 11);
 /* Print out the basic address */
 printf("Firm = %s\n", firmname);
 printf("Addr = %s\n", addressline);
 printf("City = %s\n", city);
 printf("State = %s\n", state);
 printf("ZIP = %s\n", zip10);
 /* Get polygon name and status with a multivalued return */
 while (QABGetField(ab, "PolygonName[COUNTIES]", polygonname, 128
))
 {
 /* Print out the polygon name... */
 printf("Polygon Name = %s\n", polygonname);
 /*...and the polygon status paired with each polygon name found. */
 QABGetField(ab, "PolygonStatus", "COUNTIES", polygonstatus, 2);
 /* Print out the polygon status. */
 switch (polygonstatus[0])
 {
 case 'P':
 printf (" (address is inside the polygon)\n")
 break;
 case 'I':
 printf (" (address is inside the polygon and within the
buffer radius)\n")
 break;
 case 'B':
 printf (" (address is outside the polygon but within the
buffer radius)\n")
 break;
 default:
 /* This should never happen. */
 printf (" (unknown condition)\n")
 break;
 }
 }
 }

 /* Clean up and quit */
 QABTerm (ab);

AddressBroker Reference Manual for Windows 196

AddressBroker C functions
This section describes in detail the functions available through the AddressBroker C API.

Quick reference

Initialization functions

QABInit

Creates and initializes an AddressBroker handle. Must be called before any other
function.

Property functions

QABGetPropertyID

Retrieves the value of an input or output property.

QABGetPropertyStr

Retrieves the value of an input or output property.

QABGetPropertyAttribute*

Retrieves a property attribute, such as its name, data type, and description.

QABSetPropertyID

Sets the value of a property.

QABSetPropertyStr

Sets the value of a property.

QABValidateProperties

Validates properties for consistency and completeness. This function must be called
after QABSetProperty and before calls to QABSetField.

AddressBroker Reference Manual for Windows 197

Field/Data functions

QABClear

Clears the input and output record buffers and resets all counter properties to zero.

QABGetField

Retrieves the value(s) of an output field in the current output record. Call iteratively for
fields that contain multiple values.

QABGetFieldAttribute

Retrieves a field attribute, such as its data type and description.

QABResetField

Resets the output field pointer to the first value of an output field.

QABSetField

Sets an input field value in the current input record.

QABGetRecord

Retrieves the record and advances the output record pointer.

QABResetRecord

Resets the output record pointer to the first record of the output record buffer.

QABSetRecord

Adds the data for the current record to the input record buffer and advances the input
record pointer to the next empty record.

Processing functions

QABProcessRecords

Processes a set of one or more address records.

QABLookupRecord

Processes a single incomplete address record.

Reporting functions

QABGetStatus

Retrieves status or error codes and messages.

AddressBroker Reference Manual for Windows 198

QABSetLogFn

Call back function for handling error messages.

AddressBroker Reference Manual for Windows 199

Termination

QABTerm

Destroys a QMSAddressBroker handle.

QABClear

Clears input and output record buffers and resets counter properties.

Syntax
Boolean QABClear (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 200

QABGetField

Retrieves output field value(s) from the current output record.

Syntax
Boolean QABGetField
 (ABId ab,
 const char* in_pszFieldName,
 const char* in_pszLogicalName,
 char* out_pszFieldValue,
 UInt32 in_usBufferSize)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_pszFieldName A valid, fully specified field name listed in the
OUTPUT_FIELD_LIST property (see the examples for this
function). The property name is not case sensitive, and spaces
and underscores are ignored. Input.

in_pszLogicalName
 A valid, fully specified logical name listed in the
OUTPUT_FIELD_LIST property (see the examples for this
function). The property name is not case sensitive, and spaces
and underscores are ignored. Input.

out_pszFieldValue
 Pointer to the field value to retrieve. All values are returned as
strings. Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful or no values are found.

Prerequisites

QABGetRecord

Alternates

None.

AddressBroker Reference Manual for Windows 201

Notes

These functions retrieve a field value from the current output record. Call them iteratively for
multi-valued fields. Use the QABResetField function to reset the field to its first value. To
retrieve single value fields more than once, you must call QABResetField.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

Example 1
/* Example using a field that does not require a logical name. */
char city[29];

while(QABGetRecord(ab))
{
...
QABGetField (ab, "City", city, 29);
...
}

Example 2
/* Example using a multivalued field with its logical name in the
fieldname
argument. */
char polygonname[128];
while (QABGetField (ab, "PolygonName[Counties]", NULL, polygonname,
128))
{
 ...
}

Example 3
/* Example using a multivalued field with its logical name as separate
argument. */
char polygonname[128];
while (QABGetField (ab, "PolygonName", "Counties", polygonname, 128)
)
{
 ...
}

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AddressBroker Reference Manual for Windows 202

QABGetFieldAttribute

Retrieves a field attribute.

Syntax
Boolean QABGetFieldAttribute (ABId ab,

char* in_pszFieldName,
unsigned long in_ulFieldIOType,
unsigned long in_ulAttributeName,
char* out_pszAttributeValue,
unsigned long in_ulBufferSize)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_pszFieldName A valid field name listed in the ALL_INPUT_FIELDS or
ALL_OUTPUT_FIELD_LIST property. The property name is not
case sensitive, and spaces and underscores are ignored. Do
not associate logical names with field names when using this
function. Input.

in_ulFieldIOType A symbolic constant identifying the field name as an input field
(AB_FIELD_INPUT) or an output field (AB_FIELD_OUTPUT). Input.

in_ulAttributeName A symbolic constant identifying the attribute to retrieve. Input.

out_pszAttributeValue
Pointer to the attribute value to retrieve. All values are returned
as strings. Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABSetField

QABValidateProperties

Alternates

None.

AddressBroker Reference Manual for Windows 203

Notes

QABGetFieldAttribute retrieves a field attribute’s value. These are general attributes, not
specific to a record.

Attribute Values

AB_FIELD_DATA_TYPE (size = 2)

“N” (numeric), “C” (character).

AB_FIELD_DECIMALS (size = 12)

Number of decimal places, if numeric.

AB_FIELD_DESCRIPTION (size = 33)
Short (32-character) description of field.

AB_FIELD_HELP (size = 256)

Long (255-character) field description. This is not
implemented for most fields.

AB_FIELD_LENGTH (size = 12)

Field width.

AB_FIELD_NEEDS_LOGICAL_NAME (size = 2)

“0” (zero) = No logical name permitted.
“G” = A GeoStan logical name required.
“S” = A Spatial+ logical name required.
“D” = A Demographics Library logical name required.
“C” = A GeoStan Canada logical name required.
“L” = A GDL logical name required.

AB_FIELD_NUM_VALUES (size = 12)

Maximum number of unique values possible for field.

Example
char length[13];
char datatype[2];
int len;

QABValidateProperties(ab);
QABGetFieldAttribute (ab, "City", AB_FIELD_INPUT, AB_FIELD_LENGTH,
length,13);
len = atoi (length);

QABGetFieldAttribute (ab, "PolygonName", AB_FIELD_OUTPUT,
AB_FIELD_DATA_TYPE, datatype, 2);

printf("City field length: %i\n", len);
printf("PolygonName datatype:%s\n", datatype);

AddressBroker Reference Manual for Windows 204

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

QABGetPropertyID

Retrieves a property value.

Syntax
Boolean QABGetPropertyID (ABId ab,

unsigned long in_usPropID,
char* out_pszPropValue,
unsigned long in_usBufferSize)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_usPropID A valid property symbolic constant. Input.

out_pszPropValue
Pointer to the property value to retrieve. All values are
returned as
strings. Output.

in_usBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

QABInit

Example
char buffer [AB_MAX_FIELD_VALUE];
char* szInitlist;
Boolean bMixedCase;
int len;

QABGetPropertyID(ab, AB_MIXED_CASE, buffer, AB_MAX_FIELD_VALUE);

AddressBroker Reference Manual for Windows 205

bMixedCase = atoi(buffer);

QABGetPropertyID (ab, AB_INIT_LIST, szInitlist, len);
...
free (szInitlist);

See Also

See Chapter 13, "Properties" for more information about properties.

QABGetPropertyStr

Retrieves a property value.

Syntax
Boolean QABGetPropertyStr (ABId ab,

char* in_pszPropName,
char* out_pszPropValue,
unsigned long in_usBufferSize)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_pszPropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

out_pszPropValue Pointer to the property value to retrieve. All values are
returned as strings. Output.

in_usBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 206

Notes

The QABGetPropertyID function provides slightly better performance.

Example
char buffer [AB_MAX_FIELD_VALUE];
char* szInitlist;
Boolean bMixedCase;
int len;

QABGetPropertyAttributeStr(ab, "INIT_LIST", AB_PROPERTY_LENGTH,
buffer, AB_MAX_FIELD_VALUE);
// len will include space for the trailing nul
len = atoi (buffer);
szInitlist = malloc (len);

See Also

See Chapter 13, "Properties" for more information about properties.

QABGetPropertyAttribute*

Retrieves a property attribute.

Syntax
Boolean QABGetPropertyAttributeStr (ABId ab,

char* in_pszPropName,
unsigned long in_usAttributeName,
char* out_pszAttributeValue,
unsigned long in_usBufferSize)

Boolean QABGetPropertyAttributeID (ABId ab,
unsigned long in_usPropID,
unsigned long in_usAttributeName,
char* out_pszAttributeValue,
unsigned long in_usBufferSize)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_pszPropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_usAttributeName
A symbolic constant of the attribute to retrieve. Input.

out_pszAttributeValue
Pointer to the attribute value (string) to be loaded. Output.

AddressBroker Reference Manual for Windows 207

in_usBufferSize The size of the string buffer. Input.

in_usPropID A valid property symbolic constant. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABSetPropertyID

QABSetPropertyStr for client property information

Alternates

None.

Notes

The QABGetPropertyAttributeID function provides slightly better performance. To receive
information about properties set on the server, call the function before setting any properties
in the client code. To receive information about client properties, call getPropertyAttribute
after calling QABSetPropertyID or QABSetPropertyStr.

Attribute Values

AB_PROPERTY_DATA_TYPE (size = 2)

“N” (integer), “B” (Boolean), or “C” (string).

 AB_PROPERTY_DEFAULT_VALUE
Default property value. The size of
AB_PROPERTY_DEFAULT_VALUE is determined by the value
assigned to AB_PROPERTY_LENGTH.

AB_PROPERTY_DESCRIPTION (size = 101)

Short (100-character) description of property.

AB_PROPERTY_ID (size = 12)

Property ID.

AB_PROPERTY_LENGTH (size = 12)

Length of property value.

AB_PROPERTY_NAME (size = 33)

Property name.

AB_PROPERTY_READ_ONLY(size = 2)

AddressBroker Reference Manual for Windows 208

“1” property is read-only.
“0” property is read/write.

Example 1
char datatype[2];
char length[13];

QABGetPropertyAttributeStr (ab, "MIXED CASE", AB_PROPERTY_DATA_TYPE,
datatype, 2);
QABGetPropertyAttributeStr (ab, "INIT_LIST", AB_PROPERTY_LENGTH,
length, 13);

Example 2
char datatype[2];
char length[13];

QABGetPropertyAttributeID (ab, AB_MIXED_CASE, AB_PROPERTY_DATA_TYPE,
datatype, 2);
QABGetPropertyAttributeID (ab, AB_INIT_LIST, AB_PROPERTY_LENGTH,
length, 13);

See Also

See Chapter 13, "Properties" for more information about properties.

QABGetRecord

Advances the pointer to the next record in the output record buffer.

Syntax
Boolean QABGetRecord (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful or no further records found.

Prerequisites

QABProcessRecords

Alternates

None.

AddressBroker Reference Manual for Windows 209

Notes

The first call to QABGetRecord sets a pointer in the output record buffer to the first output
record. Subsequent calls to QABGetRecord advance the pointer. When no further records are
found, FALSE is returned. Use the QABGetField functions to retrieve values from individual
record fields. Use the QABResetField function to reset the output record pointer to the first
output record.

Example
char addrln[61];
while (QABGetRecord (ab))
{
/* get field value*/
QABGetField (ab, "AddressLine", addrln, 61)
...
}
...

QABGetStatus

Returns status or error codes and messages.

Syntax
Boolean QABGetStatus (ABId ab,

unsigned long* out_ulStatus,
char* out_pszStatusMsg,
unsigned long in_ulBufferSize)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

out_ulStatus Status or error code returned. Output.

out_pszStatusMsg Status or error message returned. Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABInit

AddressBroker Reference Manual for Windows 210

Alternates

None.

Notes

Generally, a 2048-character buffer is sufficient, although the actual message size varies.

AddressBroker Reference Manual for Windows 211

QABInit

Creates instances of QMSAddressBroker subclasses.

Syntax
ABId QABInit (

unsigned long* in_usConnect,
char* in_pszHostName,
char* in_pszTransport,
char* in_pszUser,
char* in_pszPassword,
char* in_pszInitFileName)

Arguments

in_usConnect Specifies connection type (AB_CLIENT). Input.

in_pszHostName A delimited list. Input.

in_pszTransport Case-insensitive string that specifies the network protocol
AddressBroker uses. Input.

in_pszUser A valid user name. Input.

in_pszPassword A valid user’s password. Input.

in_pszInitFileName
Specify an initialization file name or NULL. Input.

Return Values

A handle to a broker instance if successfully created, NULL if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

The created object is initialized and default properties are set.

AddressBroker Reference Manual for Windows 212

The client transparently switches between servers if it has a problem establishing
communication with its current server. That is, when the client executes a command that
includes a server transaction, it switches servers if there is no response from the current
server or a transaction fails.

An AddressBroker client uses the first server specified in in_pszHostName until the server
fails, at which point it switches to the next server listed in in_pszHostName. The client
continues to use this secondary server until it—the secondary server—fails. After a failed
server is operational, it again becomes available to the client. However, the client does not
switch back unless its current server fails. When a client searches for a server and
encounters the end of in_pszHostName it continues searching from the beginning of the
list.

On a per-transaction basis, the client tries each server in turn until it finds an operational
server. If it fails to find a server, the operation fails.

When listing multiple servers, it is extremely important that they all service client requests
identically. To ensure predictable results, make sure that the server .ini files on each host
use the same initialization settings.

in_pszInitFileName optionally specifies an input file containing property settings and
keyword commands.

Values set in the input file override any default property settings. Subsequent calls to the
QABSetPropertyID and QABSetPropertyStr functions override property values found in the
file.

Example 1
// Socket protocol using machine name
ab = QABInit (AB_CLIENT, “primary:1234 | secondary:1235”, “socket”,
“MyLogon”, “MyPassword”, “MyInitFile”);

Example 2
// Socket protocol using URL
ab = QABInit (AB_CLIENT, “centrus.com:1234 | centrus-
software.com:1235”, “socket”, “MyLogon”, “MyPassword”, “MyInitFile”)
;

Example 3
// Socket protocol using IP address
ab = QABInit (AB_CLIENT, “204.180.129.200:1234 | 209.38.36.44:1235”,
“socket”, “MyLogon”, “MyPassword”, “MyInitFile”) ;

AddressBroker Reference Manual for Windows 213

QABLookupRecord

Processes a single incomplete U.S. address record or performs a reverse lookup on a
Canadian postal code.

Syntax
int QABLookupRecord (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

The OUTPUT_FIELD_LIST property defines the fields populated by QABLookupRecord, and the
return codes listed below describe the search outcome. Codes are returned only when the
relevant fields are included in OUTPUT_FIELD_LIST. A return value of zero (0) indicates an
internal failure.

Return Codes

AB_LOOKUP_ADDRESS_LINE_INCOMPLETE
For a U.S. address, the firm name or unit number could not be
resolved. Multiple incomplete records were returned. The user
can be prompted to submit more information. The most useful
fields for resolving a match generally are FirmName,
HighUnitNumber, LowUnitNumber, MatchCode, and UnitType.

Other helpful fields include AddressLine, AddressLine2,
CarrierRoute, CountyName, FIPSCountyCode,
GovernmentBuildingIndicator, HighEndHouseNumber,
LACSAddress, LastLine, LowEndHouseNumber,
PostfixDirection, PrefixDirection, RoadClassCode,
SegmentBlockLeft, SegmentBlockRight, State,
UrbanizationName, USPSRangeRecordType, ZIP, ZIPCarrtSort,
ZIPCityDelivery, ZIPClass, ZIPFacility, and ZIPUnique.

For a Canadian postal code, the input Postal Code is resolved
to a range of possible addresses that contain a single street
number. The street number suffix or unit number values will
vary over the range.

AB_LOOKUP_LAST_LINE_NOT_FOUND
For a U.S. address, multiple incomplete records returned. Did
not resolve LastLine. Use iterative calls to QABGetRecord to
retrieve possible matches. Only the following output fields are

AddressBroker Reference Manual for Windows 214

returned: MatchCode, CITY, State, ZIP, and ZIPFacility. For a
Canadian postal code, this return code indicates that the input
postal code was not found in the CPC data and is invalid.

AB_LOOKUP_MULTIPLE_MATCH
For a U.S. address, the address resolved to a multiple match.
Multiple complete address records were matched and
returned. Use iterative calls to QABGetRecord to retrieve
possible matches. For a Canadian postal code, the postal
code resolved to a range of possible addresses that vary over
the street.

AB_LOOKUP_NOT_FOUND
The address could not resolve to a match or possible match.
No records returned. Provide a more complete address. (This
return code is not used for Canada.)

AB_LOOKUP_SUCCESS
For a U.S. address, a complete single address was matched
and returned. For a Canadian postal code, a single address
was matched and returned.

AB_LOOKUP_TOO_MANY_CITIES
No records returned. An incomplete LastLine matched over
100 cities. Provide a more complete city name. (This return
code is not used for Canada.)

Prerequisites

None.

Alternates

QABSetRecord

Notes

QABLookupRecord processes a single input record and should be used only when address
information is insufficient for standardization. To process single or multiple records
containing complete addresses, use QABProcessRecords.

Minimally, address information for QABLookupRecord must include a street number, a partial
street name, and/or valid LastLine information. For Canada, a valid postal code is required
and will return a single address or a range of addresses.

QABLookupRecord is most useful in interactive programs, when an application may have to
make several calls to QABLookupRecord in order to find a match for an incomplete address.
In client/server and Internet environments, the record is transferred across the network with

AddressBroker Reference Manual for Windows 215

each call to QABLookupRecord. The function call does not return until the record is
processed. When QABLookupRecord processes an address record and fails to find an exact
match, it does an extensive search to find cities and streets that are possible matches.

The INPUT_FIELD_LIST property specifies the list of fields passed to QABLookupRecord.
Generally, provide at least FirmName, AddressLine and LastLine fields as input to
QABLookupRecord. For Canada, a valid Canadian Postal Code is the only input, and it is set
using the PostalCode input field. Only one Postal Code can be processed at a time.

The OUTPUT_FIELD_LIST property specifies the list of possible fields returned.

The MAXIMUM_LOOKUPS property limits the number of multiples—possible matches—that are
returned by QABLookupRecord. The upper limit of MAXIMUM_LOOKUPS is 100. For a Canadian
postal code, if the MAXIMUM_LOOKUPS is set to 100, the AddressBroker software increases the
MAXIMUM_LOOKUPS to 200.

Retrieve the list of possible matches using a ‘while (QABGetRecord) do QABGetField’ loop.
No records are returned when the return value of QABLookupRecord is
AB_LOOKUP_NOT_FOUND or AB_LOOKUP_TOO_MANY_CITIES.

Precisely recommends using QABProcessRecords instead of QABLookupRecord.

Example

In an interactive application, a user submits a partial address to QABLookupRecord. The
return code is AB_LOOKUP_LAST_LINE_NOT_FOUND. For a U.S. address, this code
indicates that the user did not enter enough information for QABLookupRecord to resolve the
city, state, or ZIP Code. The application can then prompt the user to select from the list of
possible cities and states returned by QABLookupRecord. The user selects the necessary
information and resubmits the address to QABLookupRecord. For a Canadian postal code,
this return code indicates that the input postal code was not found in the CPC data and is
invalid.

This time the return code is AB_LOOKUP_ADDRESS_LINE_INCOMPLETE. The user
resolved the last line problem, but the return code indicates the address line could be more
specific. For a U.S. address, it is missing information on the firm name or unit number
(suite, apartment, etc.). The application can prompt the user to select from the list of
possibilities returned by this call to QABLookupRecord. The user enters the additional
information and resubmits the address to QABLookupRecord, and AB_LOOKUP_SUCCESS is
returned. For a Canadian postal code, the AB_LOOKUP_ADDRESS_LINE_INCOMPLETE
code indicates that the input Postal Code resolved to a range of possible addresses that
contain a single street number. The street number suffix or unit number values will vary over
the range. For example, a Canadian postal code of T3C 2K7 could resolve to 123 A - 123 G
Maple Street (when the street suffix varies) or 123 Maple Street Unit 1-100 (when the unit
number changes). A valid postal code for one address submitted to lookupRecord returns
AB_LOOKUP_SUCCESS.

AddressBroker Reference Manual for Windows 216

When the next address is entered, QABLookupRecord returns the status code
AB_LOOKUP_MULTIPLE_MATCH. This indicates multiple complete matches were found. For
a U.S. address, the user may then be prompted to select from the list of possible matches.
The selected address is resubmitted to QABLookupRecord to ensure that it is entirely correct
and that AB_LOOKUP_SUCCESS is returned. For a Canadian postal code, the
AB_LOOKUP_MULTIPLE_MATCH code indicates a postal code that resolved to a range of
possible addresses that vary over the street. For example, a Canadian postal code could
resolve to 100-120 Elm, Calgary, AB or 150-165 Maple, Calgary, AB.

QABProcessRecords

Processes a set of one or more address records.

Syntax
Boolean QABProcessRecords (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

Returns TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

QABSetRecord

Notes

Each record should contain enough address information for standardization. For records
containing incomplete addresses, use QABLookupRecord, which progressively returns
address choices for one input record at a time.

The function call does not return until all of the records are processed.

The MATCH_MODE property controls the “closeness” of the matched records. Set MATCH_MODE
to AB_MODE_CLOSE for best results. See “Pre-defined property values” on page 354 for more
information.

AddressBroker Reference Manual for Windows 217

The KEEP_MULTIMATCH property specifies whether a single match or multiple matches are
returned. The RecordID input and output fields help correlate input records with their
corresponding output record(s).

The KEEP_COUNTS property specifies whether match criteria counts are kept. To keep counts,
set KEEP_MULTIMATCH to FALSE and set KEEP_COUNTS to TRUE. Keeping counts increases
processing time.

The INPUT_FIELD_LIST property specifies the list of record fields that is given to
QABProcessRecords. The OUTPUT_FIELD_LIST property specifies the list of field names that
QABProcessRecords can return.

See Also

See Chapter 13, "Properties" for more information about properties.

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

QABResetField

Resets the output field pointer to the first value of an output field.

Syntax
QABResetField (ABId ab,
char* in_pszFieldName)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_pszFieldName A valid field name listed in the OUTPUT_FIELD_LIST property.
Some field names require a logical name. The logical name
must be appended to in_pszFieldName in brackets. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABGetField

AddressBroker Reference Manual for Windows 218

Alternates

None.

Notes

QABResetField returns FALSE when, for any reason, in_pszFieldName is not found.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

Example
/* Example showing logical name appended in brackets. */
while (QABGetField (ab, "PolygonName[COUNTIES]", polygonname, 128))
{
 ...
}
QABResetField (ab, "PolygonName[COUNTIES]");

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

QABResetRecord

Resets output record pointer to the first record in the output record buffer.

Syntax
Boolean QABResetRecord (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABGetField

AddressBroker Reference Manual for Windows 219

Alternates

None.

QABSetField

Sets an input field value in the current input record.

 Syntax
Boolean QABSetField (ABId ab,

char* in_pszFieldName,
char* in_pszFieldValue)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_pszFieldName A valid field name listed in the INPUT_FIELD_LIST property.
The property name is not case sensitive, and spaces and
underscores are ignored. Input.

in_pszFieldValue The string value to assign to the field. Maximum string length
is 256 characters. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABSetProperty

Alternates

None.

Notes

The RECORD_DELIMITER, FIELD_DELIMITER, and VALUE_DELIMITER properties have default
values of line feed, tab, and CTRL-A, respectively. If your data contains any of these
characters, you must reset the appropriate property to a different character. In addition,
your data may not contain the null character.

This function sets the fields of the current input record only. QABSetRecord must be called
after each input record.

AddressBroker Reference Manual for Windows 220

Example
/*Assumes a record consists of addressline and lastline
 only. */
char addressline [61];
char lastline[61];
while (more_data)
{
QABSetField (ab, "AddressLine", addressline);
QABSetField (ab, "LastLine", lastline);
QABSetRecord (ab);
}

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information
about fields.

AddressBroker Reference Manual for Windows 221

QABSetLogFn

Call back function for handling error messages.

Syntax
Boolean QABSetLogFn (

void (* in_pLogFn)(
QMSABStatusType type,
const char * message))

Arguments

in_pLogFn A user-provided routine to handle error messages. Input.

Return Values

TRUE if successful. FALSE if the log file was not set.

Prerequisites

None.

Alternates

None.

Notes

QABSetLogFn takes a user-provided function as its argument. This function in turn takes two
arguments—an enumeration of QMSABStatusType and a message buffer (see Example
below).

Status Types

ABSTATUS_NONE

 Report no status messages.

ABSTATUS_FATAL

Report warning, errors, and fatal errors.

ABSTATUS_ERROR

Report warnings and errors only.

ABSTATUS_WARN

Report warning messages only.

AddressBroker Reference Manual for Windows 222

ABSTATUS_INFO

Report status messages.

ABSTATUS_DEBUG

Report status messages, development only.

Example
/* Here is the error handling routine the user provides us. */
void MyErrorHandler (QMSABStatusType type, const char * message)
{
...
printf("%s\n", message);
}
QABSetLogFn (MyErrorHandler);

QABSetPropertyID

Assigns a property value.

Syntax
Boolean QABSetPropertyID (ABId ab,

unsigned long in_usPropID,
const char* in_pszPropValue)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_usPropID The valid symbolic constant of the property being set. Input.

in_pszPropValue A string value to assign to the property. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABInit

Alternates

None.

AddressBroker Reference Manual for Windows 223

Notes

The enumerated constants AB_* available in abtypes.h may be passed, as a string, as input
to QABSetPropertyStr by dropping the AB_. For example, AB_INPUT_PARSED may be passed
as “INPUT_PARSED”.

Example
QABSetPropertyID(ab, "MIXED CASE", "TRUE");
QABSetPropertyID(ab, "INIT_LIST", "GEOSTAN | GEOSTAN_Z9");
QABSetPropertyID(ab, "INPUT_MODE", "INPUT_PARSED");

See Also

See Chapter 13, "Properties" for more information about properties.

QABSetPropertyStr

Assigns a property value.

Syntax
Boolean QABSetPropertyStr (ABId ab,

const char* in_pszPropName,
const char* in_pszPropValue)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

in_pszPropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_pszPropValue A string value to assign to the property. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABInit

Alternates

None.

AddressBroker Reference Manual for Windows 224

Notes

The enumerated constants AB_* available in abtypes.h may be passed, as a string, as input
to QABSetPropertyStr by dropping the AB_. For example, AB_INPUT_PARSED may be passed
as “INPUT_PARSED”.

Example
QABSetPropertyStr (ab, "MIXED CASE", "TRUE");
QABSetPropertyStr (ab, "INIT_LIST", "GEOSTAN |
GEOSTAN_Z9");
QABSetPropertyStr (ab, "INPUT_MODE", "INPUT_PARSED");

See Also

See Chapter 13, "Properties" for more information about properties.

QABSetRecord

Adds data for the current record to the input record buffer and advances the input record
pointer to the next empty record in the buffer.

Syntax
Boolean QABSetRecord (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

TRUE (1) if successful, FALSE (0) if there is no current record.

Prerequisites

QABSetField

Alternates

None.

QABTerm

Destroys QMSAddressBroker instance.

AddressBroker Reference Manual for Windows 225

Syntax
Boolean QABTerm (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QABInit

Alternates

None.

Notes

On UNIX machines, failure to call this command may result in continued system resource
consumption. See “System resources and AddressBroker UNIX servers” on page 89 for
more information.

QABValidateProperties

Validates properties for consistency and completeness.

Syntax
Boolean QABValidateProperties (ABId ab)

Arguments

ab The ID returned by a call to QABInit for the current
AddressBroker handle. Input.

Return Values

TRUE (1) if all properties are valid, FALSE (0) if one or more properties fail to
validate.

AddressBroker Reference Manual for Windows 226

Prerequisites

QABSetProperty

Alternates

None.

Notes

The QABValidateProperties function verifies the values of initialization and processing
control properties to ensure a complete and compatible set of values are available to
AddressBroker. Call this function after one or more properties have been set and before
calling QABSetField or any processing functions.

When QABValidateProperties returns TRUE, it indicates all properties have been
successfully validated and that AddressBroker is ready to process records. In some cases,
all properties can be validated in a single function call.

See Also

See Chapter 13, "Properties" for more information about properties.

Errors, messages, and status logs
The AddressBroker C API supports two independent methods of error handling:

• The use of a log file—assigned to AddressBroker’s STATUS_LOG property—used in
conjunction with a reporting threshold, assigned to AddressBroker’s STATUS_LEVEL
property.

• The THROW_LEVEL property can be used to cause your application to abort upon error.

These two error handling methods are discussed in this section. See “GeoStan location
codes” on page 433 for a discussion about the codes themselves.

Using STATUS_LOG and STATUS_LEVEL

The STATUS_LOG and STATUS_LEVEL properties do not require validation to be used or
changed. The STATUS_LOG property is set by the server administrator, rather than by the
client programmer.

STATUS_LOG holds the output destination of all reported messages and contains general
server events. Set AddressBroker’s STATUS_LOG property to one of the following:

• The path and file name for a status log to save status messages.

AddressBroker Reference Manual for Windows 227

• The value CONSOLE to display status messages to a console window.

Set AddressBroker’s STATUS_LEVEL property to the appropriate level of message reporting
you require:

• NONE—No messages. The least verbose.
• FATAL—Fatal errors, errors, and warnings.
• ERROR—Errors and warnings only.
• WARN—Warnings only.
• INFO—All information messages.
• DEBUG—Debug messages; for development only.
• SERVER—Server level only messages. Default.

The LOG_ROLLOVER property sets age and size criteria for the status and request log files for
the periodic rollover of file names. This property ensures that the log file does not become
too large or too old to be useful. The log files that are rolled over include the STATUS_LOG and
REQUEST_LOG.

Using REQUEST_LOG

The REQUEST_LOG property specifies a log file that contains a final summary of each request
(client interaction with the server). For each request, the following information will be
supplied:

• Request type.
• Request ID.
• Creation time.
• Client IP.
• Logical names used by the client.
• Username.
• Server handle number that processed the request.
• Number of records processed.
• Elapsed seconds on request queue, elapsed seconds being processed.
• Total seconds in the server.

The REQUEST_LOG property is set by the server administrator, rather than
by the client programmer. Following is a sample REQUEST_LOG file:

Request type: Initialize. Request# 1. Create time: Wed May 26 13:54:50
2004. Client IP: 175.18.2.76.
Logical Names: GEOSTAN|GEOSTAN_Z9|CENSUS2K. User Name: .
Handle# 0. Num Records: 0. Elapsed seconds on queue: 0. Elapsed seconds
in processing: 0.
Total seconds in server: 0.

AddressBroker Reference Manual for Windows 228

Using THROW_LEVEL

AddressBroker’s THROW_LEVEL property determines the level at which your application is
notified of an error or status condition. Even though the C programming language does not
support the use of try-throw-catch routines (for which this property was included), you can
still make use of it in your application as described here.

In the C API, THROW_LEVEL is automatically reset to NONE when an object initializes, thereby
disabling this mechanism of error handling.

Note: Setting THROW_LEVEL to any other value causes your application to abort if a status
condition meets or exceeds its value. THROW_LEVEL does not require validation to be
used or changed.

Legal values for THROW_LEVEL are as follows:

• FATAL—fatal errors, errors, and warnings.
• ERROR—errors and warnings only. Default.
• WARN—warnings only.
• INFO—all information messages.
• NONE—no messages.
• DEBUG—debug messages; for development only.

11 – C++ API

In this chapter

Accessing the AddressBroker C++ libraries 231
AddressBroker C++ tutorial 232
AddressBroker C++ member functions 238
Errors, messages, and status logs 281

AddressBroker Reference Manual for Windows 231

This chapter describes the C++ API to AddressBroker in detail. For general information on
AddressBroker, see Chapters 1, 2, and 4 of this manual.

This chapter provides a tutorial using the AddressBroker C++ API. The tutorial shows you
how to use most of AddressBroker’s functionality, yet is general enough that you can modify
it for other uses. A complete member function reference follows the tutorial. The final
section of this chapter discusses error handling.

The naming convention for AddressBroker C++ API functions is FunctionName. All C++
functions use this naming convention.

Accessing the AddressBroker C++ libraries
To use the AddressBroker library in a client application, you must include the appropriate
header file in your application source code files:

#include "ABbase.h" // C++ API

You must also use the appropriate syntax for creating an AddressBroker handle or instance:
// C++ API
QMSAddressBroker *ab = QMSAddressBroker::CreateClient ("hostname:4660",
"SOCKET", MyLogon, MyPassword,
"myinit.ini");

Finally, you must include the AddressBroker import library in the link step of your build.

Windows platforms

Link to the AB.lib import library, which causes your application to use AB.dll. For your
application to execute properly, this DLL must be found in your execution PATH environment
variable.

UNIX platforms

Link to libab.sl or libab.so, which causes your application to dynamically bind to the
AddressBroker library. For your application to execute properly, this shared library must be
found in your shared library path environment variable: SHLIB_PATH for HP-UX, or
LD_LIBRARY_PATH for most other UNIX systems.

Note: To process Canadian addresses, NCODEDATA and LD_LIBRARY_PATH for Solaris, or
SHLIB_PATH for HP-UX must be set. See the GeoStan Canada Reference Manual for
more information.

AddressBroker Reference Manual for Windows 232

AddressBroker C++ tutorial
This section describes the steps necessary to develop an AddressBroker application using
the C++ API. The example shows basic C++ sample code that does address record
enhancement. The sample uses the FirmName, AddressLine, and LastLine fields from
Precisely address records as input. The tutorial standardizes the address data and
augments it with city, state, and 9-digit ZIP Code information from the GeoStan data
directory. Then, it retrieves the name and status of the geographic polygon where the
address is located using a Spatial+ data file.

Sample C++ code (console.cpp) is located in the Samples subdirectory.

Step 1: Create and initialize the object

To begin, link your application to the AddressBroker import library. Your application must
include the “ABbase.h” header file, which defines AddressBroker C++ class definitions. This
header file also includes “ABtypes.h”, which defines AddressBroker data types. You do not
need to include “ABtypes.h” in your source code.

The "console.cpp" includes its header file, "console.hpp", which includes the
AddressBroker client header file:

#include "abbase.h"

You can initialize your application from a client initialization file, or you can initialize the
client programmatically without the use of an initialization file. To use the supplied
initialization file, “abconsole.ini", uncomment the line that establishes that name in the
application:

//initfile = filename;

This action causes the initialization of the AddressBroker client object to use abconsole.ini
to establish client properties, such as INIT_LIST, INPUT_MODE, INPUT_FIELD_LIST,
OUTPUT_FIELD_LIST, and others. If you leave it commented, the application will instead
invoke a function called ABConsoleTest::InitProperties() to perform the initialization
programmatically after the AddressBroker client object has been created:

if(!initfile)
{
 // set the necessary properties.
 InitProperties();
}

The hostname and port are hard coded to "localhost:4660". You can override this in two
ways. The first way is to change the following line of code:

char host[128] = "localhost:4660";

AddressBroker Reference Manual for Windows 233

The second way to override it is to invoke the program and supply the name of the host and
port on the command line. The program reads the command line and uses your supplied
parameters:

if(argc > 1) {
 strcpy(host, argv[1]);
}

The hostname is the name of the machine which is running the AddressBroker server, and
the port is the port that the server is listening on for new client connections. If your
AddressBroker server requires a logon user ID and password, you can set them in the
program by changing the following lines:

char* logon = NULL;
char* password = NULL;

You now have enough information to create the AddressBroker client object, which is
accomplished with the following line:

broker = QMSAddressBroker::CreateClient(hostname, socket", logon,
password, initfile);

The program traps possible errors generated by a failed client initialization with the
following code:

broker->GetStatus(status_code, status_msg, sizeof(status_msg));
if(status_code)
{
 throw(status_msg);
}

Step 2: Set properties

You assign a minimal set of properties in your client application. For a detailed discussion
about client applications, see Chapter 5, "Client Applications".

Logical names and paths are set on the server. The logical names the client uses must
match those set on the server. In the sample code shown in
“C++ SetProperty example” on page 234, the logical names GEOSTAN, GEOSTAN_Z9, and
COUNTIES refer to a GeoStan data directory, a GEOSTAN ZIP Code file, and a Spatial+
polygon file. Next, tell AddressBroker to use the FirmName, AddressLine, and LastLine field
values from each input record. In this example, the FirmName and AddressLine fields are
enhanced with City, State, and ZIP10 information from the GEOSTAN data file. PolygonName
and PolygonStatus are also retrieved from the COUNTIES file.

You can set other properties in the client. In the sample code, KEEP_MULTIMATCH and
BUFFER_RADIUS are set. See Chapter 13, "Properties" for a detailed discussion.

C++ property reference syntax
//setting a property using its string name
broker->SetProperty("INIT_LIST", "GEOSTAN|GEOSTAN_Z9");

AddressBroker Reference Manual for Windows 234

//setting a property using its property ID
broker->SetProperty(AB_INIT_LIST, "GEOSTAN|GEOSTAN_Z9");

//setting a pre-defined property
broker->SetProperty("INPUT_MODE", AB_INPUT_NORMAL);

C++ SetProperty example

If you choose to initialize the application properties programmatically (rather than through
an initialization file as described earlier in this example), you make calls to the SetProperty
method of the QMSAddressBroker object.

The INIT_LIST property provides the logical names that AddressBroker will use. In the
following example, a generic logical name for GeoStan is used. Add others to the pipe-
delimited list for other processing:

broker->SetProperty("INIT_LIST", "GEOSTAN|GEOSTAN_Z9");

The INPUT_FIELD_LIST provides the specific input fields to use. This is done only once in the
example; it is a dynamic property and you can set it at any time and as many times as you
want.

broker->SetProperty("INPUT_FIELD_LIST",
"FirmName|AddressLine|LastLine");

The OUTPUT_FIELD_LIST defines the output fields to be returned:
broker->SetProperty("OUTPUT_FIELD_LIST",
"FirmName|AddressLine|City|State|Zip10|MatchCode"
"|Longitude|Latitude|Location Quality Code");

You can set other properties that affect server behavior, such as instructing the server to
keep only one output record for each input record and to use a coordinate type when
returning geocodes:

broker->SetProperty("KEEP_MULTIMATCH", (Boolean)false);
broker->SetProperty("Coordinate Type", AB_COORD_FLOAT);

Step 3: Validate properties (optional)

Use the ValidateProperties function to send the property definitions to AddressBroker for
validation. When ValidateProperties returns TRUE, the AddressBroker client object
properties are set correctly and are ready for processing. If any property setting is invalid,
an error is generated. You can use GetStatus to retrieve error messages in the event
ValidateProperties does not return successfully.

All AddressBroker properties must be set and validated before data can be input or
processed. In client mode, calling this function results in a server transaction.

AddressBroker Reference Manual for Windows 235

C++ ValidateProperties example
if(!broker->ValidateProperties())
{
 UInt32 status_code;
 char status_msg[2048];
 broker->GetStatus(status_code, status_msg, sizeof(
 status_msg));
 throw(status_msg);
}

ValidateProperties can be called multiple times in your application. For example, you can
initially set and validate a group of properties, then allow the end user to dynamically select
new values and revalidate the settings.

Step 4: Enter input records and field values

Use the SetField function call to specify the input field values. Note that these are the same
fields you specified initially with the SetProperty function call (see the code example
above).

The SetRecord function call adds the data for the current record to the input record list and
advances the record pointer.

You do not need to set an input value for every field in a record. In our example, an
individual record that did not contain FirmName information could still be processed.

C++ Data input example
// build a few records for enhancement
// Fill in a record...
broker->SetField("FirmName", "Precisely");
broker->SetField("AddressLine", "4750 Walnut #200");
broker->SetField("LastLine", "Boulder, CO");

// SetRecord can fail (but only if SetField is never called)
broker->SetRecord();

// Fill in a second record...
broker->SetField("FirmName", "White House");
broker->SetField("AddressLine", "1600 Pennsylvania");
broker->SetField("LastLine", "Washington, DC");
broker->SetRecord();

Step 5: Process records

After all the input data has been entered, you are ready to process the records. Use the
ProcessRecords function to process records. In client mode, this sends all the data to the
server for processing. A return value of true indicates success and false indicates failure.
The example below deals with a failed call to ProcessRecords.

Note: This function call clears the input record buffer, even if the call fails.

AddressBroker Reference Manual for Windows 236

C++ record processing example
if(!broker->ProcessRecords())
{
 UInt32 status_code;
 char status_msg[2048];
 broker->GetStatus(status_code, status_msg, sizeof(
status_msg));
 throw(status_msg);
}
else
{
 ... ProcessRecords was successful. Return values may
 now be retrieved...
}

Step 6: Retrieve address records and field values

If ProcessRecords was successful (Step 5), use the GetRecord and GetField function calls to
retrieve the output data.

In your C++ applications, loop through Steps 4 - 6 of this tutorial each time you process
additional records. You can also repeat Steps 2 and 3 to modify property settings.

C++ data retrieval example
// field sizes are documented in manual
char firmname[41];
char addressline[61];
char city[29];
char state[3];
char zip10[11];
char matchCode[5];
char longitude[12];
char latitude[11];
char locCode[5];

// for each record that comes back
while(broker->GetRecord())
{
 // get address data
 broker->GetField("FirmName", firmname, sizeof(firmname));
 broker->GetField("AddressLine", addressline, sizeof(addressline));
 broker->GetField("City", city, sizeof(city));
 broker->GetField("State", state, sizeof(state));
 broker->GetField("ZIP10", zip10, sizeof(zip10));
 broker->GetField("MatchCode", matchCode, sizeof(matchCode));
 broker->GetField("Longitude", longitude, sizeof(longitude));
 broker->GetField("Latitude", latitude, sizeof(latitude));
 broker->GetField("LocationQualityCode", locCode, sizeof(locCode));

 // print out the basic address
 cout << "Firm = " << firmname << endl;
 cout << "Address = " << addressline << endl;
 cout << "City = " << city << endl;
 cout << "State = " << state << endl;
 cout << "ZIP = " << zip10 << endl;

AddressBroker Reference Manual for Windows 237

 cout << "Match Code = " << matchCode << endl;
 cout << "Longitude = " << longitude << endl;
 cout << "Latitude = " << latitude << endl;
 cout << "Location Quality Code = " << locCode << endl;

 //GetPolygonReturns("COUNTIES");
 cout << endl;
}

AddressBroker Reference Manual for Windows 238

AddressBroker C++ member functions
This section describes in detail the member functions available through the AddressBroker
C++ API.

Some functions are listed as FunctionName (overloaded). This indicates there are two or
more functions with the same name whose behavior depends on the argument types it is
given. For example, the same function name accepts either a Boolean type or a string type.

QMSAddressBroker classes

The QMSAddressBroker base class is never instantiated directly. Use one of the constructor
methods to instantiate a client object.

The QMSABStatus class member functions manipulate the AddressBroker Exception Status
object. To use this object, write your application to catch an exception object of this class.

The QMSABLogFile class lets you configure messaging to console or file.

Quick reference

QMSAddressBroker class member functions

Initialization member functions

createClient

Create and initialize instances of QMSAddressBroker subclasses. You must create an
instance before calling any other AddressBroker function.

Property member functions

GetProperty (overloaded)

Retrieves the value of an input or output property.

GetPropertyAttribute (overloaded)

Retrieves a property attribute, such as its name, data type, and description.

SetProperty (overloaded)

Sets the value of a property.

ValidateProperties

Validates properties for consistency and completeness.This function must be called
after SetProperty and before calls to SetField.

AddressBroker Reference Manual for Windows 239

Field/data member functions

Clear

Clears the input and output record buffers and resets all counter properties to zero.

GetField (overloaded)

Retrieves the value(s) of an output field in the current output record. Call iteratively for
fields that contain multiple values.

GetFieldAttribute

Retrieves a field attribute, such as its data type and description.

ResetField

Resets the output field pointer to the first value of an output field.

SetField

Sets an input field value in the current input record.

GetRecord

Retrieves the record and advances the output record pointer.

ResetRecord

Resets the output record pointer to the first record of the output record buffer.

SetRecord

Adds the data for the current record to the input record buffer and advances the input
record pointer to the next empty record.

Processing member functions

ProcessRecords

Processes a set of one or more address records.

LookupRecord

Processes a single incomplete address record.

Reporting member functions

GetStatus

Retrieves status or error codes and messages.

AddressBroker Reference Manual for Windows 240

Termination member functions

destroy

Destroys a QMSAddressBroker instance.

QMSABStatus class member functions

constructor (overloaded)

Creates and initializes instances of QMSABStatus class.

AddressBroker Reference Manual for Windows 241

Message

Mechanism to retrieve a status message.

Status

Mechanism to retrieve a status type.

QMSABLogFile class member functions

constructor (overloaded)

Creates and initializes instances of QMSABLogFile class.

info, vinfo

Posts an info status message.

warn, vwarn

Posts a warning status message.

error, verror

Posts an error status message.

fatal, vfatal

Posts a fatal status message.

debug, vdebug

Posts a debug status message.

showStatus

Displays a status message.

SetLogFilePath

Sets the log file path.

GetLogFilePath

Retrieves the log file path.

EnableTermIO

Flag enabling terminal IO.

DisableTermIO

Flag disabling terminal IO.

AddressBroker Reference Manual for Windows 242

UsingTermIO

Retrieves the status of terminal IO.

EnableEventLog

Flag enabling use of eventlog/syslog.

DisableEventLog

Flag disabling use of eventlog/syslog.

UsingEventLog

Retrieves the status of the use of eventlog/syslog.

SetLogProgramName

Retrieves the status of use of eventlog/syslog.

QMSAddressBroker class

Most of the functionality in AddressBroker’s C++ API is encapsulated in the
QMSAddressBroker class. The QMSAddressBroker base class is never instantiated directly.
Use one of the constructor methods to instantiate a client object.

createClient

Create and initialize an instance of the QMSAddressBroker object.

Syntax
static QMSAddressBroker::CreateClient
(char* in_pszHostlist,
 char* in_pszTransport,
 char* in_pszUser,
 char* in_pszPassword,
 const char* in_pszInitFileName)

Arguments

in_pszHostlist A delimited list of hosts where AddressBroker servers are
running. Input.

in_pszTransport Case-insensitive string that specifies the network protocol
AddressBroker uses. Set this parameter to “socket”. Input.

in_pszUser A valid user name. Input.

in_pszPassword A valid user’s password. Input.

AddressBroker Reference Manual for Windows 243

in_pszInitFileName
 Specifies the optional file name for property settings. Input.

Return Values

Returns a pointer to a new instance of the AddressBroker object if successfully created,
NULL if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

The created object is initialized and default properties are set.

The client transparently switches between servers if it has a problem establishing
communication with its current server. That is, when the client executes a command that
includes a server transaction, it switches servers if there is no response from the current
server or a transaction fails.

An AddressBroker client uses the first server specified in in_pszHostlist until the server
fails, at which point it switches over to the next server listed in in_pszHostlist. The client
continues to use this secondary server until it—the secondary server—fails. Once a failed
server is operational, it again becomes available to the client. However, the client does not
switch back unless its current server fails. When a client searches for a server and
encounters the end of in_pszHostlist, it continues searching from the beginning of the list.

On a per-transaction basis, the client tries each server in turn until it finds an operational
server. If it fails to find a server, the operation fails.

When listing multiple servers, it is extremely important that they all service client requests
identically. To ensure predictable results, make sure that the server initialization files on
each host use the same initialization settings.

in_pszInitFileName optionally specifies an input file containing property settings and
keyword commands.

Values set in the input file override any default property settings. Subsequent calls to the
SetProperty function override property values found in the file.

AddressBroker Reference Manual for Windows 244

Example 1
// Socket protocol using machine name
QMSAddressBroker *ab = QMSAddressBroker::CreateClient (
“primary:1234 | secondary:1235”, “socket”, “MyLogon”, “MyPassword”,
“MyInitFile”) ;

Example 2
// Socket protocol using URL
QMSAddressBroker *ab = QMSAddressBroker::CreateClient (
“centrus.com:1234 | centrus-software.com:1235”, “socket”, “MyLogon”,
“MyPassword”, “MyInitFile”) ;

Example 3
// Socket protocol using IP address
QMSAddressBroker *ab = QMSAddressBroker::CreateClient (
“204.180.129.200:1234 | 209.38.36.44:1235”, “socket”,
“MyLogon”, “MyPassword”, “MyInitFile”) ;

Backward Compatibility

In earlier releases of the AddressBroker product, users created objects of type
QMSAddressBrokerLocal() and QMSAddressBrokerClient(). Backward compatibility of
these objects is supported; to access new features, however, you must use the factory
methods described in this section.

destroy

Destroys QMSAddressBroker instance.

Syntax
void QMSAddressBroker::Destroy(QMSAddressBroker * ab)

Arguments

ab A pointer to an AddressBroker object.

Return Values

None.

Prerequisites

QMSAddressBroker::create

Alternates

None.

AddressBroker Reference Manual for Windows 245

Example (Windows)
QMSAddressBroker *ab = QMSAddressBroker::CreateClient
(“primary:1234 | secondary:1235”, “socket”, “MyLogon”,
“MyPassword”, “MyInitFile”) ;
...
QMSAddressBroker::Destroy(ab);

AddressBroker Reference Manual for Windows 246

Clear

Clears input and output record buffers and resets counter properties.

Syntax
virtual Boolean QMSAddressBroker::Clear ()

Arguments

None.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

None.

GetField (overloaded)

Retrieves output field value(s) from the current output record.

Syntax
virtual Boolean QMSAddressBroker::GetField (

const char* in_pszFieldName,
char* out_pszFieldValue,
const unsigned long in_ulBufferSize)

virtual Boolean QMSAddressBroker::GetField (
const char* in_pszFieldName,
const char* in_pszLogicalName,
char* out_pszFieldValue,
const unsigned long in_ulBufferSize)

Arguments

in_pszFieldName
 A valid, fully specified field name listed in the
OUTPUT_FIELD_LIST property. The property name is not case
sensitive, and spaces and underscores are ignored (see the
examples for this function). Input.

AddressBroker Reference Manual for Windows 247

in_pszLogicalName
 The logical name required by the value of in_pszFieldName.
The property name is not case sensitive, and spaces and
underscores are ignored. Input.

out_pszFieldValue
 Pointer to the field value to be loaded. All values are returned
as strings.
Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

Integer—TRUE(1) if a value for the field is found, FALSE (0) if unsuccessful or no
values found.

Prerequisites

getRecord

Alternates

None.

Notes

The GetField function retrieves a field value from the current output record. Call GetField
iteratively for multi-valued fields. Use the ResetField function to reset the field to its first
value. To retrieve single value fields more than once, you must call ResetField.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

Example 1
/*Example using a field that does not require a logical name.*/
char city[29];
ab->GetField ("City", city, 29);

Example 2
/* Example using a multivalued field with its logical name in
brackets.*/
char polygonname[128];
while (ab->GetField ("PolygonName[COUNTIES]", polygonname, 128))
{
...
}

AddressBroker Reference Manual for Windows 248

Example 3
/* Example using a multivalued field with its
 logical name as separate argument.*/
while (ab->GetField ("PolygonName", "COUNTIES", polygonname, 128))
{
...
}

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

GetFieldAttribute

Retrieves information about AddressBroker fields.

Syntax
virtual Boolean QMSAddressBroker::GetFieldAttribute (

const char* in_pszFieldName,
const unsigned long in_ulFieldIOType,
const unsigned long in_ulAttributeName,
char* out_pszAttributeValue,
const unsigned long in_ulBufferSize)

Arguments

in_pszFieldName A valid field name listed in the ALL_INPUT_FIELDS or
ALL_OUTPUT_FIELD_LIST property. The property name is not
case sensitive, and spaces and underscores are ignored. Do
not associate logical names with field names when using this
function. Input.

in_ulFieldIOType Indicates whether field name is an input field
(AB_FIELD_INPUT) or an output field (AB_FIELD_OUTPUT). Input.

in_ulAttributeName
 The symbolic constant for the attribute value to retrieve. Input.

out_pszAttributeValue
Pointer to the attribute value to be loaded. All values are
returned as strings. Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

AddressBroker Reference Manual for Windows 249

Prerequisites

SetField

Alternates

None.

Notes

GetFieldAttribute retrieves a field attribute’s value. These are general attributes, not
specific to a record.

GetFieldAttribute should only be called after ValidateProperties.

Attribute Values

AB_FIELD_DATA_TYPE (size = 2)

“N” (numeric), “C” (character).

AB_FIELD_DECIMALS (size = 12)

Number of decimal places, if numeric.

AB_FIELD_DESCRIPTION (size = 33)

Short (32-character) description of field.

AB_FIELD_HELP (size = 256)

Long (255-character) field description. This is not
implemented for most fields.

AB_FIELD_LENGTH (size = 12)

Field width.

AB_FIELD_NEEDS_LOGICAL_NAME (size = 2)

“0” (zero) = No logical name permitted.
“G” = A GeoStan logical name required.
“S” = A Spatial+ logical name required.
“D” = A Demographics Library logical name required.
“C” = A GeoStan Canada logical name required.
“L” = A GDL logical name required.

AB_FIELD_NUM_VALUES (size = 12)

Maximum number of unique values possible for field.

Example
ab->ValidateProperties();
char length[13];

AddressBroker Reference Manual for Windows 250

ab->GetFieldAttribute ("City", AB_FIELD_INPUT, AB_FIELD_LENGTH,
length, 13);
int len = atoi (length);
char datatype[2];
ab->GetFieldAttribute ("PolygonName", AB_FIELD_OUTPUT,
AB_FIELD_DATA_TYPE,
datatype, 2);

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

GetProperty (overloaded)

Retrieves a property value.

Syntax
virtual Boolean QMSAddressBroker::GetProperty (

const char* in_pszPropName,
Boolean & out_pbPropValue)

virtual Boolean QMSAddressBroker::GetProperty (
const char* in_pszPropName,
char* out_pszPropValue,
const unsigned long in_ulBufferSize)

virtual Boolean QMSAddressBroker::GetProperty (
const char* in_pszPropName,
unsigned long & out_pulPropValue)

virtual Boolean QMSAddressBroker::GetProperty (
const unsigned long in_ulPropID,
Boolean & out_pbPropValue)

virtual Boolean QMSAddressBroker::GetProperty (
const unsigned long in_ulPropID,
char* out_pszPropValue,
const unsigned long in_ulBufferSize)

virtual Boolean QMSAddressBroker::GetProperty (
const unsigned long in_ulPropID,
unsigned long & out_pulPropValue)

Arguments

in_pszPropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_ulPropID A valid property symbolic constant. Input.

out_pbPropValue The location to store the returned Boolean data. Output.

out_pszPropValue
Pointer to the property value retrieved. All values are returned
as strings.
Output.

AddressBroker Reference Manual for Windows 251

out_pulPropValue
The location to store the returned long data. Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

The GetProperty functions that accept a property ID provide slightly better performance.

Example
char buffer [AB_MAX_FIELD_VALUE];
char* szInitlist;
Boolean bMixedCase;
int len;

ab->GetProperty (AB_MIXED_CASE, buffer, AB_MAX_FIELD_VALUE);
bMixedCase = atoi(buffer);

ab->GetPropertyAttribute("INIT_LIST", AB_PROPERTY_LENGTH,
buffer, AB_MAX_FIELD_VALUE);
 /* len will include space for the trailing null */
 len = atoi (buffer);
 szInitlist = new char[len];
 ab->GetProperty(AB_INIT_LIST, szInitlist, len);
 .
 .
 .
 delete szInitlist;

See Also

See Chapter 13, "Properties" for more information on properties.

AddressBroker Reference Manual for Windows 252

GetPropertyAttribute (overloaded)

Retrieves a property attribute.

Syntax
virtual Boolean QMSAddressBroker::GetPropertyAttribute (

const char* in_pszPropName,
const unsigned long in_ulAttributeName,
char* out_pszAttributeValue,
const unsigned long in_ulBufferSize)

virtual Boolean QMSAddressBroker::GetPropertyAttribute (
const unsigned long in_ulPropID,
const unsigned long in_ulAttributeName,
char* out_pszAttributeValue,
const unsigned long in_ulBufferSize)

Arguments

in_pszPropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_ulPropID A valid property symbolic constant. Input.

in_ulAttributeName
 The symbolic constant for the attribute value to retrieve. Input.

out_pszAttributeValue
Pointer to the attribute value (string) to be loaded. Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

The GetPropertyAttribute function that accept a property ID provide slightly better
performance.

AddressBroker Reference Manual for Windows 253

Attribute Values

AB_PROPERTY_DATA_TYPE (size = 2)

“N” (integer), “B” (Boolean), or “C” (string).

 AB_PROPERTY_DEFAULT_VALUE
Default property value. The size of
AB_PROPERTY_DEFAULT_VALUE is determined by the value
assigned to AB_PROPERTY_LENGTH.

AB_PROPERTY_DESCRIPTION (size = 101)

Short (100-character) description of property.

AB_PROPERTY_ID (size = 12)

Property ID.

AB_PROPERTY_LENGTH (size = 12)

Length of property value.

AB_PROPERTY_NAME (size = 33)

Property name.

AB_PROPERTY_READ_ONLY (size = 2)

“1” property is read-only.
“0” property is read/write.

Example 1
char datatype[2];
char length[13];
ab->GetPropertyAttribute ("MIXED CASE", AB_PROPERTY_DATA_TYPE,
datatype,
2);
ab->GetPropertyAttribute ("INIT_LIST", AB_PROPERTY_LENGTH, length,
13);

Example 2
char datatype[2];
char length[13];

ab->GetPropertyAttribute (AB_MIXED_CASE, AB_PROPERTY_DATA_TYPE,
datatype,
2);
ab->GetPropertyAttribute (AB_INIT_LIST, AB_PROPERTY_LENGTH, length,
13);

See Also

See Chapter 13, "Properties" for more information on properties.

AddressBroker Reference Manual for Windows 254

GetRecord

Advances the pointer to the next record in the output record buffer.

Syntax
virtual Boolean QMSAddressBroker::GetRecord ()

Arguments

None.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

ProcessRecords

Alternates

None.

Notes

The first call to GetRecord sets a pointer to the first output record. Subsequent calls advance
the pointer. When no more data is found, the return value FALSE is returned.

Use the GetField member function to retrieve record field values. Use the ResetRecord
member function to reset the record pointer to the first record.

Example
char addrln[61];
while (ab->GetRecord ())
{
ab->GetField ("AddressLine", addrln, 61)
...
}

AddressBroker Reference Manual for Windows 255

GetStatus

Returns status or error codes and messages.

Syntax
virtual Boolean QMSAddressBroker::GetStatus (

unsigned long & out_ulStatus,
char* out_pszStatusMsg,
const unsigned long in_ulBufferSize)

Arguments

out_ulStatus Status or error code returned. Output.

out_pszStatusMsg
 Status or error message returned. Output.

in_ulBufferSize The size of the string buffer. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

Generally, a 2048-character buffer is sufficient, although the actual message size varies.

AddressBroker Reference Manual for Windows 256

LookupRecord

Processes a single incomplete U.S. address record or performs a reverse lookup on a
Canadian postal code.

Syntax
int QMSAddressBroker::LookupRecord ()

Arguments

None.

Return Values

The OUTPUT_FIELD_LIST property defines the fields populated by LookupRecord,
and the return codes listed below describe the search outcome. Codes are
returned only when the relevant fields are included in OUTPUT_FIELD_LIST. A
return value of zero (0) indicates an internal failure.

Return Codes

AB_LOOKUP_ADDRESS_LINE_INCOMPLETE
For a U.S. address, the FirmName or UnitNumber could not be
resolved. Multiple incomplete records returned. The user can
be prompted to submit more information. The most useful
fields for resolving a match generally are FirmName,
HighUnitNumber, LowUnitNumber, MatchCode, and UnitType.

Other helpful fields include AddressLine, AddressLine2,
CarrierRoute, CountyName, FIPSCountyCode,
GovernmentBuildingIndicator, HighEndHouseNumber,
LACSAddress, LastLine, LowEndHouseNumber,
PostfixDirection, PrefixDirection, RoadClassCode,
SegmentBlockLeft, SegmentBlockRight, State,
UrbanizationName, USPSRangeRecordType, ZIP, ZIPCarrtSort,
ZIPCityDelivery, ZIPClass, ZIPFacility, and ZIPUnique.

For a Canadian postal code, the input Postal Code is resolved
to a range of possible addresses that contain a single street
number. The street umber suffix or unit number values will
vary over the range.

AB_LOOKUP_LAST_LINE_NOT_FOUND
For a U.S. address, multiple incomplete records were
returned; the LastLine was not resolved. Only the following
output fields are returned: MatchCode, CITY, State, ZIP and
ZIPFacility. For a Canadian postal code, this return code

AddressBroker Reference Manual for Windows 257

indicates that the input postal code was not found in the CPC
data and is invalid.

AB_LOOKUP_MULTIPLE_MATCH
For a U.S. address, the address resolved to a multiple match.
Multiple complete address records returned. Use iterative
calls to GetRecord to retrieve possible matches. For a
Canadian postal code, the postal code resolved to a range of
possible addresses that vary over the street.

AB_LOOKUP_NOT_FOUND
No records returned, no address matched. Provide a more
complete address. (This return code is not used for Canada.)

AB_LOOKUP_SUCCESS
For a U.S. address, a single complete address was matched
and returned. For a Canadian postal code, a single address
was matched and returned.

AB_LOOKUP_TOO_MANY_CITIES
No records returned. An incomplete LastLine matched over
100 cities. Provide a more complete address. (This return
code is not used for Canada.)

Prerequisites

None.

Alternates

SetRecord

Notes

LookupRecord processes a single input record and should be used only when address
information is insufficient for standardization. To process single or multiple records
containing complete addresses, use ProcessRecords.

Minimally, address information for LookupRecord must include a street number, a partial
street name, and/or valid LastLine information. For Canada, a valid postal code is required
and will return a single address or a range of addresses.

LookupRecord is most useful in interactive programs, when an application may have to make
several calls to LookupRecord in order to find a match for an incomplete address. In
client/server and Internet environments, the record is transferred across the network with
each call to LookupRecord. The function call does not return until the record is processed.
When LookupRecord processes an address record and fails to find an exact match, it does
an extensive search to find cities and streets that are possible matches.

AddressBroker Reference Manual for Windows 258

The INPUT_FIELD_LIST property specifies the list of fields passed to LookupRecord.
Generally, provide at least FirmName, AddressLine and LastLine fields as input to
LookupRecord. For Canada, a valid Canadian Postal Code is the only input, and it is set
using the PostalCode input field. Only one Postal Code can be processed at a time.

The OUTPUT_FIELD_LIST property specifies the list of possible fields returned.

The MAXIMUM_LOOKUPS property limits the number of multiples—possible matches—that are
returned by LookupRecord. The upper limit of MAXIMUM_LOOKUPS is 100. For a Canadian postal
code, if the MAXIMUM_LOOKUPS is set to 100, the AddressBroker software increases the
MAXIMUM_LOOKUPS to 200.

Retrieve the list of possible matches using a ‘while (GetRecord) do GetField’ loop. No
records are returned when the return value of LookupRecord is AB_LOOKUP_NOT_FOUND
or AB_LOOKUP_TOO_MANY_CITIES.

Precisely recommends using ProcessRecords instead of LookupRecord.

Example

In an interactive application, a user submits a partial address to LookupRecord. The return
code is AB_LOOKUP_LAST_LINE_NOT_FOUND. For a U.S. address, this code indicates the
user did not enter enough information for LookupRecord to resolve the city, state or ZIP
Code. The application prompts the user to select from the list of possible cities and states
returned by LookupRecord. The user selects the necessary information and resubmits the
address to LookupRecord. For a Canadian postal code, this return code indicates that the
input postal code was not found in the CPC data and is invalid.

This time the return code is AB_LOOKUP_ADDRESS_LINE_INCOMPLETE. The user
resolved the last line problem, but the return code indicates the address line could be more
specific. For a U.S. address, it is missing information on the firm name or unit number
(suite, apartment, etc.). The application can prompt the user to select from the list of
possibles returned by this call to LookupRecord. The user enters the additional information
and resubmits the address to LookupRecord, and AB_LOOKUP_SUCCESS is returned. For a
Canadian postal code, the AB_LOOKUP_ADDRESS_LINE_INCOMPLETE code indicates that
the input Postal Code resolved to a range of possible addresses that contain a single street
number. The street number suffix or unit number values will vary over the range. For
example, a Canadian postal code of T3C 2K7 could resolve to 123 A - 123 G Maple Street
(when the street suffix varies) or 123 Maple Street Unit 1-100 (when the unit number
changes). A valid postal code for one address submitted to lookupRecord returns
AB_LOOKUP_SUCCESS.

When the next address is entered, LookupRecord returns the status code
AB_LOOKUP_MULTIPLE_MATCH. This indicates multiple complete matches were found. For
a U.S. address, the user may then be prompted to select from the list of possible matches.
The selected address is resubmitted to LookupRecord to ensure that it is entirely correct, and

AddressBroker Reference Manual for Windows 259

that AB_LOOKUP_SUCCESS is returned. For a Canadian postal code, the
AB_LOOKUP_MULTIPLE_MATCH code indicates a postal code that resolved to a range of
possible addresses that vary over the street. For example, a Canadian postal code could
resolve to 100-120 Elm, Calgary, AB or 150-165 Maple, Calgary, AB.

AddressBroker Reference Manual for Windows 260

ProcessRecords

Processes a set of one or more input records.

Syntax
virtual Boolean QMSAddressBroker::ProcessRecords ()

Return Values

Returns TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

None.

Alternates

SetRecord

Notes

Each record should contain enough address information for standardization. For records
containing incomplete addresses, use LookupRecord, which progressively returns address
choices for one input record at a time.

The function call does not return until all of the records are processed.

See Also

See Chapter 13, "Properties" for more information on properties.

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

AddressBroker Reference Manual for Windows 261

ResetField

Resets the output pointer to the first value of an output field.

Syntax
virtual Boolean QMSAddressBroker::ResetField (

const char* in_pszFieldName,
const char* in_pszLogicalName)

Arguments

in_pszFieldName
 A valid field name listed in the OUTPUT_FIELD_LIST property.
Some field names require a logical name. The logical name
may be appended to in_FieldName in brackets, or passed in
the in_LogicalName parameter (see the examples for this
function). The property name is not case sensitive, and spaces
and underscores are ignored. Input.

in_pszLogicalName
 The logical name required by the value of in_pszFieldName.
The property name is not case sensitive, and spaces and
underscores are ignored. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

GetField

Alternates

None.

Notes

ResetField returns FALSE when, for any reason, in_pszFieldName is not found.

If GetField is called with the logical name in brackets, then ResetField must be called with
the logical name in brackets. Similarly, if the logical name is passed as a separate
parameter in GetField, then it should be a separate parameter in ResetField.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

AddressBroker Reference Manual for Windows 262

Example 1
// Example using field name with its logical name in brackets.
while (ab->GetField ("PolygonName[COUNTIES]", polygonname, 128))
{
 ...
}
ab->ResetField ("PolygonName[COUNTIES]");

Example 2
// Example using field name with its logical name as a separate
argument.
while (ab->GetField ("PolygonName", "COUNTIES", polygonname, 128))
{
 ...
}
ab->ResetField ("PolygonName", "COUNTIES");

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

ResetRecord

Resets output record pointer to the first record in the output record buffer.

Syntax
virtual Boolean QMSAddressBroker::ResetRecord ()

Arguments

None.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

GetField

Alternates

None.

AddressBroker Reference Manual for Windows 263

SetField

Sets an input field value in the current input record.

Syntax
virtual Boolean QMSAddressBroker::SetField (

const char* in_pszFieldName,
const char* in_pszFieldValue)

Arguments

in_pszFieldName A valid field name listed in the INPUT_FIELD_LIST property.
The property name is not case sensitive, and spaces and
underscores are ignored. Input.

in_pszFieldValue The string value to assign to the field. Maximum string length
is 256 characters. Input.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

SetProperty

Alternates

None.

Notes

Reserved characters: The RECORD_DELIMITER, FIELD_DELIMITER, and VALUE_DELIMITER
properties have default values of line feed, tab, and CTRL-A, respectively. If your data
contains any of these characters, you must reset the appropriate property to a different
character. In addition, your data may not contain the null character.

This function sets the fields of the current input record only. SetRecord must be called after
each input record.

Example
/*Assumes a record consists of addressline and lastline
 only. */
char addressline [61];
char lastline[61];
while (more_data)
{

AddressBroker Reference Manual for Windows 264

 ab->SetField ("AddressLine", addressline);
 ab->SetField ("LastLine", lastline);
 ab->SetRecord ();
}

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

SetProperty (overloaded)

Assign a property value.

Syntax
virtual Boolean QMSAddressBroker::SetProperty (

const char* in_pszPropName,
const Boolean in_bPropValue)

virtual Boolean QMSAddressBroker::SetProperty (
const char* in_pszPropName,
const char* in_pszPropValue)

virtual Boolean QMSAddressBroker::SetProperty (
const char* in_pszPropName,
const unsigned long in_ulPropValue)

virtual Boolean QMSAddressBroker::SetProperty (
const unsigned long in_ulPropID,
const Boolean in_bPropValue)

virtual Boolean QMSAddressBroker::SetProperty (
const unsigned long in_ulPropID,
const char* in_pszPropValue)

virtual Boolean QMSAddressBroker::SetProperty (
const unsigned long in_ulPropID,
const unsigned long in_ulPropValue)

Arguments

in_pszPropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_ulPropID The valid symbolic constant of the property being set. Input.

in_bPropValue A Boolean value to assign to the property. Input.

in_pszPropValue A string value to assign to the property. The enumerated
constants AB_* available in abtypes.h may be passed as a
string, as input to SetProperty, by dropping the AB_ from the
beginning. For example, AB_INPUT_PARSED may be passed as
“INPUT_PARSED”. Input.

in_ulPropValue The long value to assign to the property. Input.

AddressBroker Reference Manual for Windows 265

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

QMSAddressBroker::create

Alternates

None.

Notes

The SetProperty functions set input properties. The specific SetProperty function to use
depends on the data type of the property you are setting. The SetProperty functions that
accept a property ID provide slightly better performance.

Example 1
ab->SetProperty ("MIXED CASE", (Boolean) TRUE);

Example 2
ab->SetProperty (AB_MIXED_CASE, (Boolean) TRUE);

Example 3
ab->SetProperty ("INIT_LIST", "GEOSTAN | GEOSTAN_Z9");

Example 4
ab->SetProperty (AB_INIT_LIST, "GEOSTAN | GEOSTAN_Z9");

Example 5
ab->SetProperty (AB_INPUT_MODE, “INPUT_PARSED”);

See Also

See Chapter 13, "Properties" for more information on properties.

AddressBroker Reference Manual for Windows 266

SetRecord

Adds data for the current record to the input record buffer and advances the input record
pointer to the next empty record in the buffer.

Syntax
virtual Boolean QMSAddressBroker::SetRecord ()

Arguments

None.

Return Values

TRUE (1) if successful, FALSE (0) if unsuccessful.

Prerequisites

SetField

Alternates

None.

Notes

Each call to the SetRecord member function sets the data for the current record and
advances the record pointer to the next empty record.

AddressBroker Reference Manual for Windows 267

ValidateProperties

Validates properties for consistency and completeness.

Syntax
virtual Boolean QMSAddressBroker::ValidateProperties ()

Arguments

None.

Return Values

TRUE (1) if all properties are valid, FALSE (0) if one or more properties fail to
validate.

Prerequisites

SetProperty

Alternates

None.

Notes

The ValidateProperties function verifies the values of initialization and processing control
properties to ensure a complete and compatible set of values are available to
AddressBroker. Call this function after one or more properties have been set and before
calling SetField or any processing functions.

When ValidateProperties returns TRUE, it indicates all properties have been successfully
validated and that AddressBroker is ready to process records. In some cases, all properties
can be validated in a single function call.

See Also

See Chapter 13, "Properties" for more information on properties.

AddressBroker Reference Manual for Windows 268

QMSABStatus class

Use the QMSABStatus class to handle the AddressBroker Exception Status object.

constructor (overloaded)

Creates and initializes an instance of the QMSABStatus object.

Syntax
QMSABStatus ()
QMSABStatus (QMSABStatus &statusObj)
QMSABStatus (const char* message, ...)
QMSABStatus (QMSABStatusType type,
const char* message, ...)
QMSABStatus (QMSABStatusType type,
const char* message,
va_list args)

Arguments

&statusObj A QMSABStatus object. Input.

message A string value containing a status message. The maximum
length of the message is equal to MAX_MESSAGE_LENGTH
(1024). Input.

type A valid QMSABStatusType, as listed here. Input.

ABSTATUS_NONE

ABSTATUS_FATAL

ABSTATUS_ERROR

ABSTATUS_WARN

ABSTATUS_INFO

ABSTATUS_DEBUG

args A variable argument list (standard C). Input.

Return Values

Returns a pointer to a new instance of the status object if successfully created,
NULL if unsuccessful.

AddressBroker Reference Manual for Windows 269

Prerequisites

None.

Alternates

None.

Message

Mechanism to retrieve a status message.

Syntax
const char* Message(void)

Arguments

None.

Return Value

Returns a pointer to a string containing a status message.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 270

Status

Mechanism to retrieve a status type.

Syntax
QMSABStatusType Status(void)

Arguments

None.

Return Value

Returns QMSABStatusType.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 271

QMSABLogFile class

Use the QMSABLogFile class to direct logging to console or file.

constructor (overloaded)

Creates and initializes an instance of the QMSABLogFile object.

Syntax
QMSABLogFile ()
QMSABLogFile(Boolean useTerm,
const char* logFile,
Boolean useEventLog,
const char* progName)

Arguments

useTerm A Boolean indicating the use of the terminal for status
messages. Input.

logFile A string containing the name of a log file. Input.

useEventLog A Boolean specifying logFile to be eventlog (on Windows
platforms) or syslog (on UNIX platforms). Input.

progName The name of the program sending the status messages.
Default is abserver. Input.

Return Value

Returns a pointer to a new instance of the log file object if successfully created,
NULL if unsuccessful.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 272

GetLogFilePath

Retrieves the log file path.

Syntax
const char* GetLogFilePath (void)

Arguments

None.

Return Value

A string containing the path to a log file.

Prerequisites

None.

Alternates

None.

SetLogFilePath

Sets the log file path.

Syntax
void SetLogFilePath (const char* path)

Arguments

path A string containing the path to a log file. Input.

Return Value

None.

Prerequisites

None.

AddressBroker Reference Manual for Windows 273

Alternates

None.

SetLogProgramName

Sets the name of the program sending status messages.

Syntax
void SetLogProgramName (const char* progName)

Arguments

progName The name of the program sending the status messages.
Default is abserver. Input.

Return Value

None.

Prerequisites

None.

Alternates

None.

DisableEventLog

Flag disabling use of eventlog (windows) or syslog (unix).

Syntax
void DisableEventLog(void)

Arguments

None.

Return Value

None.

AddressBroker Reference Manual for Windows 274

Prerequisites

None.

Alternates

None.

Notes

Default is off.

EnableEventLog

Flag enabling use of eventlog (windows) or syslog (unix).

Syntax
void EnableEventLog(void)

Arguments

None.

Return Value

None.

Prerequisites

None.

Alternates

None.

Notes

Default is off.

AddressBroker Reference Manual for Windows 275

UsingEventLog

Retrieves the status of use of eventlog (windows) or syslog (unix).

Syntax
Boolean UsingEventLog(void)

Arguments

None.

Return Values

TRUE (1) indicates eventlog (Windows) or syslog (UNIX) is disabled. FALSE (0)
indicates use of these logs is enabled.

Prerequisites

None.

Alternates

None.

DisableTermIO

Flag disabling terminal io.

Syntax
void DisableTermIO(void)

Arguments

None.

Return Value

None.

Prerequisites

None.

AddressBroker Reference Manual for Windows 276

Alternates

None.

Notes

Default is off.

EnableTermIO

Flag enabling terminal io.

Syntax
void EnableTermIO(void)

Arguments

None.

Return Value

None.

Prerequisites

None.

Alternates

None.

Notes

Default is off.

UsingTermIO

Retrieves the status of terminal io.

Syntax
Boolean UsingTermIO(void)

AddressBroker Reference Manual for Windows 277

Arguments

None.

Return Values

TRUE (1) indicates terminal /IO is disabled. FALSE (0) indicates terminal I/O is
enabled.

Use debug, error, fatal, info, and warn to post messages to the log file.

Prerequisites

None.

Alternates

None.

debug, vdebug

Posts a debug status message.

Syntax
void debug (const char* format, ...)
void vdebug (const char* format, va_list args)

Arguments

format A format string status message. Maximum length of a
message is MAX_MESSAGE_LENGTH (1024). Input.

args A variable argument list (standard C). Input.

Return Value

None.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 278

error, verror

Posts an error status message.

Syntax
void error (const char* format, ...)
void verror (const char* format, va_list args)

Arguments

format A format string status message. Maximum length of a
message is MAX_MESSAGE_LENGTH (1024). Input.

args A variable argument list (standard C). Input.

Return Value

None.

Prerequisites

None.

Alternates

None.

info, vinfo

Posts an info status message.

Syntax
void info (const char* format, ...)
void vinfo (const char* format, va_list args)

Arguments

format A format string status message. Maximum length of a
message is MAX_MESSAGE_LENGTH (1024). Input.

args A variable argument list (standard C). Input.

Return Value

None.

AddressBroker Reference Manual for Windows 279

Prerequisites

None.

Alternates

None.

fatal, vfatal

Posts a fatal status message.

Syntax
void fatal (const char* format, ...)
void vfatal (const char* format, va_list args)

Arguments

format A format string status message. Maximum length of a
message is MAX_MESSAGE_LENGTH (1024). Input.

args A variable argument list (standard C). Input.

Return Value

None.

Prerequisites

None.

Alternates

None.

warn, vwarn

Posts a warning status message.

Syntax
void warn (const char* format, ...)
void vwarn (const char* format, va_list args)

AddressBroker Reference Manual for Windows 280

Arguments

format
A format string status message. Maximum length of a
message is MAX_MESSAGE_LENGTH (1024). Input.

args
A variable argument list (standard C). Input.

Return Value

None.

Prerequisites

None.

Alternates

None.

showStatus

Displays a status message.

Syntax
void showStatus (QMSABStatus &status)

Arguments

status An object of type QMSABStatus. Input.

Return Value

None.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 281

Errors, messages, and status logs
The AddressBroker C++ API supports two independent methods of error handling:

• the use of a log file—assigned to AddressBroker’s STATUS_LOG property—used in
conjunction with a reporting threshold, assigned to AddressBroker’s STATUS_LEVEL
property.

• a try-throw-catch routine used in conjunction with the THROW_LEVEL property.

These two error handling methods are discussed in this section. See “GeoStan location
codes” on page 433 for a discussion about the codes themselves.

Using STATUS_LEVEL and STATUS_LOG

These two properties do not require validation to be used or changed.

STATUS_LOG holds the output destination of all reported messages. Set AddressBroker’s
STATUS_LOG property to either:

• the path and file name for a status log to save status messages.
• the value CONSOLE to display status messages to a console window.

Set AddressBroker’s STATUS_LEVEL property to the appropriate level of message reporting
you require:

• FATAL—fatal errors, errors, and warnings.
• ERROR—errors and warnings only.
• WARN—warnings only.
• INFO—all information messages.
• NONE—no messages.
• DEBUG—debug messages; for development only.
• SERVER to report server level only messages. Default.

Using THROW_LEVEL

AddressBroker’s THROW_LEVEL property determines the level at which your application is
notified of an error or status condition. Use THROW_LEVEL in combination with a try-throw-
catch routine to manage errors and status conditions. THROW_LEVEL does not require
validation to be used or changed. Legal values for THROW_LEVEL are:

• FATAL—fatal errors, errors, and warnings.
• ERROR—errors and warnings only. Default.
• WARN—warnings only.
• INFO—all information messages.

AddressBroker Reference Manual for Windows 282

• NONE—no messages.
• DEBUG—debug messages; for development only.

12 – ActiveX Interface

In this chapter

IDEs and enumerated types 284
AddressBroker properties vs. ActiveX properties 284
Accessing the AddressBroker ActiveX library 284
AddressBroker ActiveX tutorial 285
AddressBroker ActiveX functions 294
AddressBroker ActiveX properties 318
Errors, messages, and status logs 338

AddressBroker Reference Manual for Windows 284

This chapter describes in detail the ActiveX interface to AddressBroker. For general
information on AddressBroker, please refer to Chapters 1, 2, and 4 of this manual.

This chapter provides a tutorial using the AddressBroker ActiveX component in a Visual
Basic coding environment. This tutorial shows you how to use most of AddressBroker’s
functionality, yet is general enough that you can port it to other coding environments,
including ASP and other Web development environments. A complete function and property
reference follows the tutorial. The final section of this chapter discusses error handling.

The naming convention for AddressBroker ActiveX functions is FunctionNameX. All ActiveX
functions use this naming convention.

The AddressBroker ActiveX component is an ActiveX object for use primarily as an
automation tool. It can be used in Integrated Development Environments (IDE) such as
Visual Basic, Delphi, and Power Builder. It can also be used with Web scripting languages
such as VBScript. JavaScript and JScript are not supported.

IDEs and enumerated types
Some AddressBroker properties have enumerated types. Please be aware that some
Integrated Development Environments do not support the use of enumerated types. Please
see ABXConstants.asp, shipped on the installation CDs for an example work-around.

AddressBroker properties vs. ActiveX properties
Both AddressBroker and ActiveX make use of a “property” concept.

• The AddressBroker ActiveX properties have a 1:1 naming correspondence with
AddressBroker properties—unless otherwise noted.

• The ActiveX component includes a small set of non-AddressBroker properties—that is,
properties specific to the AddressBroker ActiveX interface. These properties are all
discussed as “ActiveX only” properties. The information conveyed in this small set of
properties is equivalent to information passed via function parameters in
AddressBroker’s other APIs.

• Please note that when using functions to manipulate properties programmatically, you
can only set AddressBroker properties. Using an “ActiveX only” property as an
argument to one of the functions result in an error.

Accessing the AddressBroker ActiveX library
If you chose the default installation, there are no additional steps required to access the
AddressBroker ActiveX library. If you did not choose the default installation, make sure the
library is in the same directory as the ActiveX component.

AddressBroker Reference Manual for Windows 285

The calling language determines the method by which the component is accessed. For
instance, in Visual Basic, you must make a reference to the component. In C++, you must
add a #include statement for qmsabactx.dll to your code.

AddressBroker ActiveX tutorial
This chapter describes the steps necessary to develop a client application using the
AddressBroker ActiveX component in Visual Basic 5. The example shows some Visual
Basic sample code that does address standardization and enhancement. The sample
includes a form with a “Process Addresses” button and an output text box. When the
Process Addresses button is pressed, addresses are processed using Firm_Name and
Address fields as input.

This sample application standardizes the address data and augments it with city, state, and
9-digit ZIP Code information using the GeoStan data directory. Then it retrieves the name
and status of the geographic polygon in which the address is found using a Spatial+ data
file.

Sample Visual Basic code (ABXSample.frm) for a client application is shipped with
AddressBroker. It is located in the Samples\ActX\VB subdirectory. For detailed descriptions
of ActiveX functions and properties, refer to the “AddressBroker ActiveX functions” on
page 294. For detailed descriptions of AddressBroker properties and fields, refer to the
specific sections on these topics.

Step 1: Create and initialize the object

To begin, enable the AddressBroker ActiveX type library. From the Project menu, select the
References.

AddressBroker Reference Manual for Windows 286

Select AddressBroker ActiveX 1.2. Click OK.

Next a variable of the proper type must be defined in the global area. Double-click on the
Form1 window to open the code window.

The component must be created before it is used. When the form using the component is
loaded, (Form_Load event) create the component. To do this:

1. Select Load from the event drop-down menu.

2. Add code as needed so the code window reads:

Dim ab As QmsABActiveXv1
Private Sub Form_Load ()
Set ab = New QmsABActiveXv1
End Sub

The component must be deleted when it is finished being used. When the form using the
component is unloaded, (Form_Unload), delete the component.

To do this step:

AddressBroker Reference Manual for Windows 287

3. Select Unload from the event drop-down menu as shown in screen shot, above.

4. Add code as needed so the code window reads:

Private Sub Form_Unload (Cancel As Integer)
Set ab = Nothing
End Sub

Next, add some functionality to the form. To do this:

5. Select the Form1 window.

6. Add a command button to the form.

This is accomplished by double-clicking on the command button icon shown on the left
side of the VB screen.

7. Set the caption property for the command button.

To do this, use the properties dialog found on the right hand side of the VB screen.
Change the text from “Command1” to “Process Addresses”.

.

AddressBroker Reference Manual for Windows 288

8. Add a text box to the form. You can change the name of the text box if you wish. This
example keeps the default name “Text1”.

9. Use the property dialog again, this time to set the multiline property for the text box to
“true”.

10. Double-click on the “Process Addresses” button to access the code window for the
Command1_Click event. This code window is shown below.

11. The variables used in the Command1_Click subroutine must be defined and the
component initialized. As part of the initialization process, you must set the ActiveX
properties required for the type of application you are building.

For clients, you are required to set the “ActiveX only” properties HostList,
TransportProtocol, UserName, Password, and—optionally—
InitializationFileName. Precisely also recommends setting the LogFileName
property, unless you plan to use the default value, ab.log.

Once the required ActiveX properties have been set, make a call to InitializeX. The
following code is for a client application. Enter it in the Command1_Click subroutine:

AddressBroker Reference Manual for Windows 289

Dim ab as QmsABActiveXv1
Private Sub Form_Load()
 Set ab = New QmsABActiveXv1
End Sub

 Private Sub Command1_Click()
 Dim return_value As Integer
 Dim msg_code
 Dim msg
 Dim valid_properties As Integer
 Dim valid_state As Integer
 Dim firmname
 Dim addressline
 Dim city
 Dim state
 Dim zip10
 Dim polygonname
 Dim polygonstatus
 Dim endl As String * 2
 ‘Define an end of line string for use in outputting results.
 endl = chr$(13) + chr$(10)
 ‘Set the Active X properties for a client application.
 ‘We plan to use the LogFileName default; no need to set here.
 ‘Set the list of host:port pairs to use. Only use one server in this
example.
 ab.HostList = “localhost:4660”
 ab.TransportProtocol = “socket”
 ab.Username = “MyUserName”
 ab.Password = “MyPassword”
 ‘Default is false, for clients.
‘Optionally specify an initialization file
 ‘ab.InitializationFileName = “ABActiveX.ini”
 return_value = ab.InitializeX()
 ‘Check the return value for success or failure.

Step 2: Set properties

You should assign a minimal set of AddressBroker properties in your application. In the
client/server application shown here, logical names and paths are set on the server. The
input and output field name properties and the initialization list property are set on the client.
These topics are discussed in detail in the chapters devoted to client applications earlier in
the manual.

The client refers to the logical names to access geo-demographic data on the server. The
logical names the client uses must match those set on the server. In the sample code
shown in AddressBroker ActiveX setting properties example, the logical names GEOSTAN,
GEOSTAN_Z9, and COUNTIES refer to a GeoStan data directory, a GEOSTAN ZIP Code file, and
a Spatial+ polygon file, respectively. Next, the examples tells AddressBroker to use the
FirmName, AddressLine, and LastLine field values from each input record. In this example,
FirmName and AddressLine fields are enhanced with City, State, and ZIP10 information from
the GeoStan data file. PolygonName and PolygonStatus are also retrieved from the
COUNTIES file.

AddressBroker Reference Manual for Windows 290

You may set other properties on the client. In the sample code, KEEP_MULTIMATCH and
BUFFER_RADIUS are set. See Chapter 13, "Properties" for a detailed discussion.

To accomplish this step, add this additional code to the Command_Click1 subroutine:

ActiveX property reference syntax
' This example shows how to set properties in VB using methods
' VB requires you to specify the return value, even if unused.

result = ab.SetPropertyX("INIT_LIST", "GEOSTAN|GEOSTAN_Z9|Counties")
result = ab.SetPropertyXBool("MIXED CASE", True)
' Set enumerated values using the Property ID or the equivalent value
result = ab.SetPropertyXLong("INPUT MODE", 0)
result = ab.SetPropertyXLong("INPUT MODE", ABX_INPUT_NORMAL)

' This example shows how to set properties in VB using ActiveX properties

ab.InitList = "GEOSTAN|GEOSTAN_Z9|Counties"
ab.MixedCase = True
' Set enumerated values using the Property ID or the equivalent value
ab.InputMode = ABX_INPUT_NORMAL
ab.InputMode = 0

AddressBroker ActiveX setting properties example
‘Identify the Logical names to use. These must match the names used on
the server.
 ab.InitList = "GEOSTAN|GEOSTAN_Z9|Counties"
 ‘Identify the inputs. Although we do this only once in this example
 ‘it is a dynamic property, so you can set it at any time, as many times
as you want
 ab.InputFieldList = "FirmName|AddressLine|LastLine"
 ‘Identify the output we expect returned
 ab.OutputFieldList =
"FirmName|AddressLine|City|State|Zip10|PolygonName[COUNTIES]|PolygonSta
tus[COUNTIES]"
 ‘Set some other properties that affect behavior
 ‘Only keep one output record for each input record.
 ab.KeepMultimatch = False
 ‘Set a 200 foot buffer instead of using the default
 ab.BufferRadius = 200

Step 3: Validate properties (optional)

Use the ValidatePropertiesX function to send the property definitions to AddressBroker for
validation. When ValidatePropertiesX returns TRUE, the AddressBroker client object is
initialized and ready for processing. If any property setting is invalid, an error is generated.
You can use GetStatusX to retrieve error messages in the event ValidatePropertiesX does
not return successfully.

All AddressBroker properties must be set and validated before data can be input or
processed. In client mode, calling this function results in a server transaction. To
accomplish this step, add this code to the Command_Click1 subroutine:

AddressBroker Reference Manual for Windows 291

AddressBroker ActiveX ValidatePropertiesX example
‘Check to see that properties are valid
 valid_properties = ab.ValidatePropertiesX()
 If valid_properties = 0 Then
 return_value = ab.GetStatusX(msg_code, msg)
 Text1.Text = "Validate Properties failed msg = " + endl + msg + endl
 End If

ValidatePropertiesX can be called multiple times in your application. For example, you can
initially set and validate a group of properties, then allow the end user to dynamically select
new values and revalidate the settings.

Step 4: Enter input records and field values

Next call SetFieldX function to specify the input field values. Note that these are the same
fields you specified initially by setting the InputFieldList property (see “AddressBroker
ActiveX setting properties example” on page 290).

The SetRecordX function adds the data for the current record to the input record list and
advances the record pointer. An input value need not be set for every field in a record. For
instance, in our example, an individual record that did not contain FirmName information
could still be processed.

To accomplish this step, add this code to the Command_Click1 subroutine:

AddressBroker ActiveX input data example
‘Enter a few records for processing
 If valid_properties <> 0 Then
 ‘Fill in a record…
 return_value = ab.SetFieldX("FirmName", "Precisely")
 return_value = ab.SetFieldX("AddressLine", "4750 Walnut")
 return_value = ab.SetFieldX("LastLine", "Boulder, CO")
 return_value = ab.SetRecordX()
 ‘Fill in the next record…
 return_value = ab.SetFieldX("FirmName", "White House")
 return_value = ab.SetFieldX("AddressLine", "1600 Pennsylvania")
 return_value = ab.SetFieldX("LastLine", "Washington, DC")
 return_value = ab.SetRecordX()
 End If

Step 5: Process records

Once all the input data has been entered, you are ready to process the records. Use the
ProcessRecordsX function to process your address records. This sends all the data to the
server for processing.

Note: Calling this function clears the input record buffer, even if the call fails.

To accomplish this step, add this code to the Command_Click1 subroutine:

AddressBroker Reference Manual for Windows 292

AddressBroker ActiveX record processing example
If valid_properties <> 0 Then
 valid_state = ab.ProcessRecordsX()

 If valid_state = 0 Then
 return_value = ab.GetStatusX(msg_code, msg)
 Text1.Text = "Process Records failed msg = " + endl + msg + endl
 End If
 End If

Step 6: Retrieve address records and field values

Use the GetRecordX and GetFieldX* functions to retrieve the output data. “AddressBroker
ActiveX data retrieval example” adds the output data to a text string that displays in Form1’s
text box (Text1).

To accomplish this step, add this code to the Command_Click1 subroutine:

AddressBroker ActiveX data retrieval example
 If valid_state <> 0 Then

 Text1.Text = ""

 Do While ab.GetRecordX()
 ‘get address data
 return_value = ab.GetFieldX("FirmName", 41, firmname)
 return_value = ab.GetFieldX("AddressLine", 61, addressline)
 return_value = ab.GetFieldX("City", 29, city)
 return_value = ab.GetFieldX("State", 3, state)
 return_value = ab.GetFieldX("ZIP10", 11, zip10)

 ‘output the basic address
 Text1.Text = Text1.Text + "Firm = " + firmname + endl
 Text1.Text = Text1.Text + "Address = " + addressline + endl
 Text1.Text = Text1.Text + "City = " + city + endl
 Text1.Text = Text1.Text + "State = " + state + endl
 Text1.Text = Text1.Text + "ZIP = " + zip10 + endl

 ‘ Get polygon namd and status with a multivalued return
 Do While ab.GetFieldX("PolygonName[Counties]", 128, polygonname)
 ‘Print out the polygon name
 Text1.Text = Text1.Text + " polygon name = " + polygonname
+ endl
 ‘…and the polygon status (paired with each polygon name found)
 return_value = ab.GetFieldX("PolygonStatus", 2, polygonstatus)
 If polygonstatus = "P" Then
 Text1.Text = Text1.Text + " polygon status = (address is
inside the polygon)" + endl + endl
 ElseIf polygonstatus = "I" Then
 Text1.Text = Text1.Text + " polygon status = (address is
inside the polygon and within the buffer radius)" + endl + endl
 ElseIf polygonstatus = "B" Then
 Text1.Text = Text1.Text + " polygon status = (address is
outside the polygon but within the buffer radius)" + endl + endl
 Else

AddressBroker Reference Manual for Windows 293

 Text1.Text = Text1.Text + " polygon status = (unknown
condition)" + endl + endl
 End If
 Loop

 Loop
 End If

Once you have entered all the code in the code window, compile and run your program.
Press the “Process Addresses” button on Form1.

The output appears in the Form1 text box, as shown below. The addresses have been
standardized and enhanced with spatial information.

AddressBroker Reference Manual for Windows 294

AddressBroker ActiveX functions
This section describes in detail the functions available through the AddressBroker ActiveX
component.

Quick reference

QmsActiveXv1 class functions

Initialization functions

InitializeX

Initializes the ActiveX component. Call this function before calling any other
AddressBroker ActiveX function.

Property functions

Note: These functions manipulate AddressBroker properties only. Using these functions
with an ActiveX only property results in error. See “AddressBroker ActiveX properties”
on page 318.

GetPropertyX*

Retrieves the value of an input or output property.

GetPropertyAttributeX

Retrieves a property attribute, such as its name, data type, and description.

SetPropertyX*

Sets the value of a property.

ValidatePropertiesX

Validates properties for consistency and completeness. This function must be called
after properties are set and before calls to SetFieldX.

Field/data functions

ClearX

Clears the input and output record buffers and resets all counter properties to zero.

GetFieldX*

Retrieves the value(s) of an output field in the current output record. Call iteratively for
fields that contain multiple values.

AddressBroker Reference Manual for Windows 295

GetFieldAttributeX

Retrieves a field attribute, such as its data type and description.

ResetFieldX

Resets the output field pointer to the first value of an output field.

SetFieldX

Sets an input field value in the current input record.

GetRecordX

Retrieves the record and advances the output record pointer.

ResetRecordX

Resets the output record pointer to the first record of the output record buffer.

SetRecordX

Adds the data for the current record to the input record buffer and advances the input
record pointer to the next empty record.

Processing functions

LookupRecordX

Processes a single incomplete address record.

ProcessRecordsX

Processes a set of one or more address records.

Reporting functions

GetStatusX

Retrieves status and error codes and messages.

AddressBroker Reference Manual for Windows 296

QMSActiveXv1 class

The AddressBroker ActiveX component has one class. All of the functions described in this
section are members of this class.

The class name is QmsABActiveXv1. The two interfaces supported by the class are:
IQmsABActiveXv1 and IAddressBrokerX2. The IAddressBrokerX2 interface is the default
interface for the class.

ClearX

Clears input and output record buffers and resets counter properties.

Syntax
Integer ClearX ()

Arguments

None.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

None.

Alternates

None.

GetFieldX*

Retrieves output field value(s) from the current output record.

Syntax
Integer GetFieldX (

String in_FieldName,
Integer in_MaxStringSize,
Variant out_FieldValue)

Integer GetFieldXUseLogical (
String in_FieldName,
String in_LogicalName,

AddressBroker Reference Manual for Windows 297

Integer in_MaxStringSize,
Variant out_FieldValue)

Arguments

in_FieldName
A valid, fully specified field name listed in the
OUTPUT_FIELD_LIST property (see Example). The property
name is not case sensitive, and spaces and underscores are
ignored. Input.

in_LogicalName
 The logical name required by the value of in_FieldName. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

in_MaxStringSize
 The maximum size of the output string. Input.

out_FieldValue
Pointer to the field value to be loaded. All values are returned
as strings. Output.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

SetFieldX

Alternates

None.

Notes

The GetFieldX* functions retrieve a field value from the current output record. Call
GetFieldX* iteratively for multi-valued fields. Use the ResetFieldX function to reset the field
to its first value. To retrieve single value fields more than once, you must call ResetFieldX.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

VB Example 1
‘Example using a field that does not require a logical name.
Dim return_value As Integer
Dim City

AddressBroker Reference Manual for Windows 298

...
return_value = ab.GetFieldX ("City", 29, city)

VB Example 2
‘Example using a multivalued field with its logical name in brackets.
Dim PolygonName
...
Do while ab.GetFieldX ("PolygonName[Counties]", 128, PolygonName)
 ...

VB Example 3
‘Example using a multivalued field
‘with its logical name as separate argument.
Dim PolygonName
...
Do while ab.GetFieldXUseLogical ("PolygonName”, “Counties", 128,
PolygonName)
 ...

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

GetFieldAttributeX

Retrieves information about AddressBroker fields.

Syntax
Integer GetFieldAttributeX (

String in_FieldName,
Integer in_FieldIOType,
Integer in_AttributeID,
Variant out_AttributeValue)

Arguments

in_FieldName
A valid field name listed in the AllInputFields or
AllOutputFieldList property. The property name is not case
sensitive, and spaces and underscores are ignored. Do not
associate logical names with field names when using this
function. Input.

in_FieldIOType
Indicates whether field name is an input field—
ABX_FIELD_INPUT (1)—or an output field—
ABX_FIELD_OUTPUT (2). Input.

AddressBroker Reference Manual for Windows 299

in_AttributeID
The symbolic constant for the attribute value to retrieve. Input.

out_AttributeValue
 Pointer to the attribute value to be loaded. All values are
returned as strings. Output.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

SetFieldX

Alternates

None.

Notes

GetFieldAttributeX retrieves a field attribute’s value. These are general attributes, not
specific to a record. Attribute values are listed opposite.

Attribute Values

Note: You must work with the numeric values provided in parentheses if you are using a
coding environment that does not support enumerated types.

ABX_FIELD_DATA_TYPE (0)
“N” (numeric), “C” (character).

ABX_FIELD_DECIMALS (2)
Number of decimal places, if numeric.

ABX_FIELD_DESCRIPTION (5)
Short (32-character) description of field.

ABX_FIELD_HELP (6)
Long (255-character) field description. This is not
implemented for most fields.

ABX_FIELD_LENGTH (1)
Field width.

ABX_FIELD_NEEDS_LOGICAL_NAME (5)

AddressBroker Reference Manual for Windows 300

“0” (zero) = No logical name permitted.
“G” = A GeoStan logical name required.
“S” = A Spatial+ logical name required.
“D” = A Demographics Library logical name required.
“C” = A GeoStan Canada logical name required.
“L” = A GDL logical name required.

ABX_FIELD_NUM_VALUES (3)
Maximum number of unique values possible for field.

VB Example
Dim return_value As Integer
Dim length As String
Dim len As Integer
...
return_value = ab.GetFieldAttributeX ("City", ABX_FIELD_INPUT,
ABX_FIELD_LENGTH, length)
len = num$ (length)

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

AddressBroker Reference Manual for Windows 301

GetPropertyX*

Retrieves a property value.

Syntax
Integer GetPropertyX (

String in_PropName,
Variant out_PropValue)

Integer GetPropertyXBool (
String in_PropName,
Variant out_PropValue)

Integer GetPropertyXLong (
String in_PropName,
Variant out_PropValue)

Arguments

in_PropName
A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

out_PropValue
The value of the property given in in_PropName. Output.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

In addition to using GetPropertyX* to retrieve AddressBroker property values, many
AddressBroker property values can be retrieved via the ActiveX property of the same name
using the value = PropertyName syntax.

Note: This function manipulates AddressBroker properties only. Using these functions with
an ActiveX only property results in error. See “AddressBroker ActiveX properties” on
page 318.

VB Example
Dim mixedcase

AddressBroker Reference Manual for Windows 302

Dim initlist
Dim return_value As Integer
...
return_value = ab.GetPropertyXBool (“MIXEDCASE”, mixedcase)
return_value = ab.GetPropertyX (“INITLIST”, initlist)
MsgBox initlist
‘MsgBox output would show something like
‘ GEOSTAN \t GEOSTAN_Z9 \t COUNTIES

‘ This example shows how to get properties in VB using ActiveX
properties

value = ab.InitList
MsgBox InitList
‘MsgBox output would show something like
‘ SAGNET \t GEOSTAN_Z9 \t COUNTIES

GetPropertyAttributeX

Retrieves a property attribute.

Syntax
Integer GetPropertyAttributeX (

String in_PropName,
Integer in_AttributeID,
Variant out_AttributeValue)

Arguments

in_PropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_AttributeID The symbolic constant for the attribute value to retrieve. Input.

out_AttributeValue
 The attribute value to be loaded. Output.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

None.

Alternates

None.

AddressBroker Reference Manual for Windows 303

Notes

This function manipulates AddressBroker properties only. Using these functions with an
ActiveX only property results in error. See “AddressBroker ActiveX properties” on page 318.

Attribute Values

Note: You must work with the numeric values provided in parentheses if you are using a
coding environment that does not support enumerated types.

ABX_PROPERTY_DATA_TYPE (5)

“N” (integer), “B” (Boolean), or “C” (string).

ABX_PROPERTY_DEFAULT_VALUE (2)

Default property value. The size of
ABX_PROPERTY_DEFAULT_VALUE is determined by the value
assigned to ABX_PROPERTY_LENGTH.

ABX_PROPERTY_DESCRIPTION (1)

Short (100-character) description of property.

ABX_PROPERTY_ID (4)

Property ID.

ABX_PROPERTY_LENGTH (6)

Length of property value.

ABX_PROPERTY_NAME (3)

Property name.

ABX_PROPERTY_READ_ONLY (0)

“1” property is read-only.
“0” property is read/write.

VB Example
Dim datatype As String
Dim length_flag As String
Dim return_value As Integer
return_value = ab.GetPropertyAttributeX ("MIXED CASE",
ABX_PROPERTY_DATA_TYPE, datatype)
return_value = ab.GetPropertyAttributeX ("INIT_LIST",
ABX_PROPERTY_LENGTH, length)

AddressBroker Reference Manual for Windows 304

GetRecordX

Advances the pointer to the next record in the output record buffer.

Syntax
Integer GetRecordX ()

Arguments

None.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

ProcessRecordsX

Alternates

None.

Notes

The first call to GetRecordX sets a pointer to the first output record. Subsequent calls
advance the pointer. When no more data is found, the return value 1 is returned.

Use the GetFieldX* functions to retrieve record field values. Use the ResetRecordX function
to reset the record pointer to the first record.

VB Example
Dim AddrLn
Do while ab.GetRecordX ())
 ab.GetFieldX ("AddressLine",AddrLn)
 ...
Loop

AddressBroker Reference Manual for Windows 305

GetStatusX

Returns status or error codes and messages.

Syntax
Integer GetStatusX (

Variant out_Status,
Variant out_StatusMsg)

Arguments

out_Status Status or error code returned. Output.

out_StatusMsg Status or error message returned. Output.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

Generally, a 2048-character buffer is sufficient, although the actual message size varies.

AddressBroker Reference Manual for Windows 306

InitializeX

initializes the control for processing.

Syntax
Integer InitializeX ()

Arguments

None.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

None.

Alternates

None.

Notes

Before calling InitializeX, set the “ActiveX only” properties.

Clients require: HostList, TransportProtocol, LocalMode, UserName, Password, and
(optionally) InitializationFileName.

See AddressBroker ActiveX properties beginning on page 318 for detailed information
about each property.

Set the properties required for a client object. Then call InitializeX before calling any
other function.

VB Example
ab.HostList = "localhost:4660"
ab.TransportProtocol = "socket"
ab.UserName = "MyUserName"
ab.Password = "MyPassword"
return_value = ab.InitializeX ()

AddressBroker Reference Manual for Windows 307

LookupRecordX

Processes a single incomplete U.S. address record or performs a reverse lookup on a
Canadian postal code.

Syntax
Integer LookupRecordX ()

Arguments

None.

Return Values

The OUTPUT_FIELD_LIST property defines the fields populated by LookupRecordX,
and the return codes listed below describe the search outcome. Individual codes
are returned only when the relevant fields are included in OUTPUT_FIELD_LIST. A
return value of zero (0) indicates an internal failure.

Return Codes

Note: You must work with the numeric values provided in parentheses if you are using a
coding environment that does not support enumerated types.

ABX_LOOKUP_ADDRESS_LINE_INCOMPLETE (3)
For a U.S. address, the FirmName or UnitNumber could not be
resolved. Multiple incomplete records returned. User can be
prompted to submit more information. The most useful fields
for resolving a match generally are FirmName, HighUnitNumber,
LowUnitNumber, MatchCode, and UnitType.

Other helpful fields include AddressLine, AddressLine2,
CarrierRoute, CountyName, FIPSCountyCode,
GovernmentBuildingIndicator, HighEndHouseNumber,
LACSAddress, LastLine, LowEndHouseNumber,
PostfixDirection, PrefixDirection, RoadClassCode,
SegmentBlockLeft, SegmentBlockRight, State,
UrbanizationName, USPSRangeRecordType, ZIP, ZIPCarrtSort,
ZIPCityDelivery, ZIPClass, ZIPFacility, and ZIPUnique.

For a Canadian postal code, the input Postal Code is resolved
to a range of possible addresses that contain a single street
number. The street number suffix or unit number values will
vary over the range.

ABX_LOOKUP_LAST_LINE_NOT_FOUND (4)
For a U.S. address, multiple incomplete records returned. Did
not resolve LastLine. Use iterative calls to GetRecordX to

AddressBroker Reference Manual for Windows 308

retrieve the possible matches. Only the following output fields
are returned: MatchCode, City, State, ZIP and ZIPFacility.
For a Canadian postal code, this return code indicates that the
input postal code was not found in the CPC data and is invalid.

ABX_LOOKUP_MULTIPLE_MATCH (2)
For a U.S. address, the address resolved to a multiple match.
Multiple complete address records returned. Use iterative
calls to GetRecordX to retrieve possible matches. For a
Canadian postal code, the postal code resolved to a range of
possible addresses that vary over the street.

ABX_LOOKUP_NOT_FOUND (6)
No records returned, no address matched. Provide a more
complete address. (This return code is not used for Canada.)

ABX_LOOKUP_SUCCESS (1)
For a U.S. address, a single complete address was matched
and returned. For a Canadian postal code, a single address
was matched and returned.

ABX_LOOKUP_TOO_MANY_CITIES (5)
No records returned. An incomplete LastLine matched over
100 cities. Provide a more complete address. (This return
code is not used for Canada.)

Prerequisites

None.

Alternates

SetRecordX

Notes

LookupRecordX processes a single input record and should be used only when address
information is insufficient for standardization. To process single or multiple records
containing complete addresses, use ProcessRecordsX.

Minimally, address information for LookupRecordX must include a street number, a partial
street name, and/or valid LastLine information. For Canada, a valid postal code is required
and will return a single address or a range of addresses.

LookupRecordX is most useful in interactive programs, when an application may have to
make several calls to LookupRecordX in order to find a match for an incomplete address. In
client/server and Internet environments, the record is transferred across the network with

AddressBroker Reference Manual for Windows 309

each call to LookupRecordX. The function call does not return until the record is processed.
When LookupRecordX processes an address record and fails to find an exact match, it does
an extensive search to find cities and streets that are possible matches.

The INPUT_FIELD_LIST property specifies the list of fields passed to LookupRecordX.
Generally, provide at least FirmName, AddressLine and LastLine fields as input to
LookupRecordX.For Canada, a valid Canadian Postal Code is the only input, and it is set
using the PostalCode input field. Only one Postal Code can be processed at a time.

The OUTPUT_FIELD_LIST property specifies the list of possible fields returned.

The MAXIMUM_LOOKUPS property limits the number of multiples—possible matches—that are
returned by LookupRecordX. The upper limit of MAXIMUM_LOOKUPS is 100. For a Canadian
postal code, if the MAXIMUM_LOOKUPS is set to 100, the AddressBroker software increases the
MAXIMUM_LOOKUPS to 200.

Retrieve the list of possible matches using a ‘while (GetRecord) do GetField’ loop. No
records are returned when the return value of LookupRecordX is
ABX_LOOKUP_NOT_FOUND or ABX_LOOKUP_TOO_MANY_CITIES.

Precisely recommends using ProcessRecordsX instead of LookupRecordX.

VB Example

In an interactive application, a user submits a partial address to LookupRecordX. The return
code is ABX_LOOKUP_LAST_LINE_NOT_FOUND. For a U.S. address, this code indicates
that the user did not enter enough information for LookupRecordX to resolve the city, state, or
ZIP Code. The application prompts the user to select from the list of possible cities and
states returned by LookupRecordX. The user selects the necessary information and
resubmits the address to LookupRecordX. For a Canadian postal code, this return code
indicates that the input postal code was not found in the CPC data and is invalid.

This time the return code is ABX_LOOKUP_ADDRESS_LINE_INCOMPLETE. The user
resolved the last line problem, but the return code indicates the address line could be more
specific. For a U.S. address, it is missing information on the firm name or unit number
(suite, apartment, etc.). The application can prompt the user to select from the list of
possibles returned by this call to LookupRecordX. The user enters the additional information
and resubmits the address to LookupRecordX, and ABX_LOOKUP_SUCCESS is returned. For
a Canadian postal code, the ABX_LOOKUP_ADDRESS_LINE_INCOMPLETE code indicates
that the input Postal Code resolved to a range of possible addresses that contain a single
street number. The street number suffix or unit number values will vary over the range. For
example, a Canadian postal code of T3C 2K7 could resolve to 123 A - 123 G Maple Street
(when the street suffix varies) or 123 Maple Street Unit 1-100 (when the unit number
changes). A valid postal code for one address submitted to lookupRecord returns
ABX_LOOKUP_SUCCESS

AddressBroker Reference Manual for Windows 310

When the next address is entered, LookupRecordX returns the status code
ABX_LOOKUP_MULTIPLE_MATCH. This indicates multiple complete matches were found.
For a U.S. address, the user may then be prompted to select from the list of possible
matches. The selected address is resubmitted to LookupRecordX to ensure that it is entirely
correct, and that ABX_LOOKUP_SUCCESS is returned. For a Canadian postal code, the
ABX_LOOKUP_MULTIPLE_MATCH code indicates a postal code that resolved to a range of
possible addresses that vary over the street. For example, a Canadian postal code could
resolve to 100-120 Elm, Calgary, AB or 150-165 Maple, Calgary, AB.

ProcessRecordsX

Processes a set of one or more input records.

Syntax
Integer ProcessRecordsX ()

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

None.

Alternates

SetRecordX

Notes

Each record should contain enough address information for standardization. For records
containing incomplete addresses, use LookupRecordX, which progressively returns
address choices for one input record at a time.

The function does not return until all of the records are processed.

See Also

See Chapter 13, "Properties" for more information on properties.

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

AddressBroker Reference Manual for Windows 311

ResetFieldX

Resets the output pointer to the first value of an output field.

Syntax
Integer ResetFieldX (

String in_FieldName,
String in_LogicalName)

Arguments

in_FieldName A valid field name listed in the OutputFieldList property.
Spatial+ and Demographic fields require logical names. The
logical name may be appended to in_FieldName in brackets,
or passed in the in_LogicalName parameter (see Example).
The property name is not case sensitive, and spaces and
underscores are ignored. Input.

in_LogicalName The logical name required by the value of in_FieldName. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

GetFieldX

Alternates

None.

Notes

ResetFieldX returns 0 when, for any reason, in_FieldName is not found.

All Spatial+, GDL, and Demographic fields require logical names. GeoStan and GeoStan
Canada fields do not.

VB Example
//Example using field name with its logical name in brackets.
Dim PolygonName
Dim return_value As Integer
Do while ab.GetFieldX ("PolygonName[COUNTIES]", PolygonName
 ...
Loop

AddressBroker Reference Manual for Windows 312

return_value = ab.ResetFieldX (“PolygonName”, COUNTIES”)

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

ResetRecordX

Resets output record pointer to the first record in the output record buffer.

Syntax
Integer ResetRecordX ()

Arguments

None.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

GetFieldX

Alternates

None.

AddressBroker Reference Manual for Windows 313

SetFieldX

Sets an input field value in the current input record.

Syntax
Integer SetFieldX (

String in_FieldName,
String in_FieldValue)

Arguments

in_FieldName A valid field name listed in the InputFieldList property. The
property name is not case sensitive, and spaces and
underscores are ignored. Input.

in_FieldValue The string value to assign to the field. Maximum string length
is 256 characters. Input.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

SetPropertyX

Alternates

None.

Notes

Reserved characters: The RecordDelimiter, FieldDelimiter, and ValueDelimiter
properties have default values of line feed, tab, and CTRL-A, respectively.

• If your data contains any of these characters, you must reset the associated property to
a different character.

• Your data must not contain the null character.

For example, a resetting of the ValueDelimiter property in the AddressBroker server
initialization file might appear as follows:
VALUEDELIMITER = 2

This would reset the value delimiter from CTRL-A (ASCII decimal 1 or “start of heading”) to
CTRL-B (ASCII decimal 2 or “start of text”).

AddressBroker Reference Manual for Windows 314

VB Example
Dim addressline As String
Dim lastline As String
Dim return_value As Integer
 ...
addressline = “2900 Center Green Court”
lastline = “Boulder Colorado”
ab.SetFieldX (“AddressLine”, addressline)
ab.SetFieldX (“LastLine”, lastline)

See Also

See “INPUT_FIELD LIST and OUTPUT_FIELD_LIST” on page 66 for more information on
fields.

SetPropertyX*

Assign a property value.

Syntax
Integer SetPropertyX (

String in_PropName,
String in_PropValue)

Integer SetPropertyXBool (
String in_PropName,
Integer in_PropValue)

Integer SetPropertyXLong (
String in_PropName,
Long in_PropValue)

Arguments

in_PropName A valid property name. The property name is not case
sensitive, and spaces and underscores are ignored. Input.

in_PropValue The value to assign to the property. Input.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

InitializeX

Alternates

None.

AddressBroker Reference Manual for Windows 315

Notes

The specific SetPropertyX* function to use depends on the data type of the property you
are setting.

Note: This function manipulates AddressBroker properties only. Using these functions with
an “ActiveX only” property results in error. See “AddressBroker ActiveX properties” on
page 318.

The AddressBroker ActiveX interface supports two ways of setting most AddressBroker
properties:

• with the SetPropertyX* function, described here.
• with ActiveX properties using the PropertyName=value syntax. See “AddressBroker

ActiveX properties” on page 318. See the Quick reference section on page 318 for a
complete list of AddressBroker properties that can be set using ActiveX properties.

VB Example 1
' This example shows how to set properties in VB using functions
' VB requires you to specify the return value, even if unused.

result = ab.SetPropertyX("INIT_LIST", "GEOSTAN|GEOSTAN_Z9|Counties")
result = ab.SetPropertyXBool("MIXED CASE", True)
' Set enumerated values using the Property ID or the equivalent value
result = ab.SetPropertyXLong("INPUT MODE", 0)
result = ab.SetPropertyXLong("INPUT MODE", ABX_INPUT_NORMAL)

VB Example 2
' This example shows how to set properties in VB using ActiveX
properties

ab.InitList = "GEOSTAN|GEOSTAN_Z9|Counties"
ab.MixedCase = True
' Set enumerated values using the Property ID or the equivalent value
ab.InputMode = ABX_INPUT_NORMAL
ab.InputMode = 0

SetRecordX

Adds data for the current record to the input record buffer and advances the input record
pointer to the next empty record in the buffer.

Syntax
Integer SetRecordX ()

Arguments

None.

AddressBroker Reference Manual for Windows 316

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

SetFieldX

Alternates

None.

ValidatePropertiesX

Validates properties for consistency and completeness.

Syntax
Integer ValidatePropertiesX ()

Arguments

None.

Return Values

Returns 1 if successful, 0 if unsuccessful.

Prerequisites

SetPropertyX

Alternates

None.

Notes

The ValidatePropertiesX function verifies the values of initialization and processing control
properties to ensure a complete and compatible set of values are available to
AddressBroker. Call this function after one or more AddressBroker properties have been
set and before calling SetFieldX or any processing functions.

When ValidatePropertiesX returns 1, it indicates all properties have been successfully
validated and that AddressBroker is ready to process records. In some cases, all properties
can be validated in a single function call.

AddressBroker Reference Manual for Windows 317

See Also

See Chapter 13, "Properties" for more information on properties.

AddressBroker Reference Manual for Windows 318

AddressBroker ActiveX properties
This section describes in detail the properties available through the AddressBroker ActiveX
component. The ActiveX properties have a 1:1 naming correspondence with
AddressBroker properties (unless otherwise noted). For information about AddressBroker
properties, see , “Properties”.

This section also describes a small set of non-AddressBroker properties—that is, properties
specific to the AddressBroker ActiveX interface. These have been identified throughout as
“ActiveX only”. ActiveX-only properties cannot be manipulated programmatically with the
SetPropertyX* or GetPropertyX* functions.

Setting and validating AddressBroker properties

The AddressBroker ActiveX interface supports two ways of setting most AddressBroker
properties:

• with the SetPropertyX* function. All AddressBroker properties can be set using
SetPropertyX*.

• with ActiveX properties. The syntax for using ActiveX properties is a simple “name =
value” statement. See the Quick reference section, next, for a complete list of
AddressBroker properties that can be set this way.

AddressBroker property values are invalid until InitializeX has been successfully called and
ValidatePropertiesX has been called.

Setting and validating ActiveX only properties

The ActiveX only properties are set using a “name = value” statement. These properties
must be assigned values before InitializeX is invoked.

Quick reference: properties

ActiveX only properties

The properties listed here are true ActiveX properties and have all of the characteristics
generally attributed to ActiveX properties. ActiveX only properties cannot be manipulated
programmatically with AddressBroker ActiveX functions.

Set the ActiveX only properties as the first step in all applications using the ActiveX
component.

HostList LogFileName TransportProtocol

InitializationFileName Password UserName

AddressBroker Reference Manual for Windows 319

QMSActiveXv1 class properties

The AddressBroker ActiveX component has one class. All of the properties described in this
section are members of this class.

AddressPreference

Sets address preference when a single record contains more than one address.

Data type
Integer.

Notes

Valid values are:

See “Address preference” on page 450.

AddressPreference AllInputFields
AllOutputFields BufferRadius
BufferRadiusTable CacheSize
CarrtProcessed CentroidPreference
CentroidPreference DataType
Datum DaysRemaining
DpbcProcessed FieldDelimiter
FileDate GeoRecordTotal
InitList InputFieldList
InputMode KeepCounts
KeepMultimatch LogicalNames
MatchMode MaximumLookups
MaximumPoints MaximumPolygons
MiscCounts MixedCase
OffsetDistance OutputFieldList
RecordDelimiter RecordsMatched
RecordsProcessed RecordsRemaining
Timeout ValueDelimiter
Version Z4ChangeDate
Zip4Processed Zip4Skipped
ZipProcessed ApproxPbKey

ABX_ADDRESS_BOTTOM 1 (Default)

ABX_ADDRESS_POBOX 2

ABX_ADDRESS_STREET 3

AddressBroker Reference Manual for Windows 320

AllInputFields

Retrieves a list of all valid input field names. Based on the value assigned to the InitList
property.

Data Type
String.

Notes

Read-only.

The list of available input fields depends upon values set in several other AddressBroker
properties including InitList, InputMode, GEOSTAN_PATHS, GEOSTAN_Z9_PATHS,
GEOSTAN_Z5_PATHS, GEOSTAN_CANADA_PATHS, SPATIAL_PATHS, and DEMOGRAPHICS_PATHS,
properties.

AllOutputFields

Retrieves a list of all valid output field names. Based on the value of the InitList property.

Data Type
String.

Notes

Read-only.

The list of available output fields depends upon values set in several other properties
including InitList, InputMode, GEOSTAN_PATHS, GEOSTAN_Z9_PATHS, GEOSTAN_Z5_PATHS,
GEOSTAN_CANADA_PATHS, SPATIAL_PATHS, and DEMOGRAPHICS_PATHS properties.

BufferRadius

Sets the spatial buffer radius (or width), in feet, to apply to the features in a polygon (spatial)
search.

Data Type
Long.

Notes

The default value is 0 feet. Range = 0 - 5280000.

AddressBroker Reference Manual for Windows 321

BufferRadiusTable

Sets the list of Spatial+ buffer radius entries.

Syntax
ab.BufferRadiusTable = "Value"
where Value = location code:buffer radius[LOGICAL NAME] | location
code:buffer radius[LOGICAL NAME]...
or where Value = location code:buffer radius[LOGICAL NAME] \t location
code:buffer radius[LOGICAL NAME]...

Data Type
String.

Notes

This property is a delimited list. Each item in the list consists of three elements. The first
element is a location quality code (specified fully or with a wild card character) followed by a
colon (:). The second element is the radius buffer (in feet). The last element, in brackets, is
the logical name of a Spatial+ data file. The logical name must be specified in the
SPATIAL_PATHS server property.

There are two properties that specify the buffer radius for spatial analysis: BufferRadius
and BufferRadiusTable. AddressBroker uses the value assigned to BufferRadius for the
general case.

BufferRadiusTable lets you specify the radius to use based on the LocationQualityCode
output field value of an individual record.

You can use BufferRadiusTable without listing LocationQualityCode in the OutputFieldList
property.

For example, a table entry of:

AS0:50[FLOODPLAIN]

specifies that when AddressBroker does a spatial analysis on addresses with the location
code “ASO”, a buffer radius of 50 feet be used with the FLOODPLAIN data.

To minimize the number of BUFFER_RADIUS_TABLE entries, you can use the
star (*) character as a wild card to replace the trailing end of a location code. For example,
a table entry of:

A*:1000[COUNTIES]

AddressBroker Reference Manual for Windows 322

indicates that when AddressBroker does a spatial analysis on addresses with a location
code starting with “A” followed by any other value, a buffer radius of 1000 feet be used with
the COUNTIES data.

The match algorithm for BufferRadiusTable is a linear left-to-right search. That is, the first
entry in the buffer radius table to match the location code is the one used. This is
particularly important to note when using wild cards.

The most specific table entries should be first (left-most) in the table. The most general
entries should be toward the end (right-most) of the table. For example:

AS0:10[COUNTIES] | A*:1000[COUNTIES]

specifies that when AddressBroker does a spatial analysis on addresses with a “best”
location quality code (“AS0”) a buffer radius of 10 feet be used with the COUNTIES data.
However, the spatial analysis of addresses with more general location quality codes (A*) is
done with a radius buffer of 1000 feet.

If these two BufferRadiusTable entries were reversed, the “AS0:10[COUNTIES]” would
never be applied, as “A*:1000[COUNTIES]” is the more general match. When making
BufferRadiusTable entries, it is important to specify location codes and order the entries
carefully for your particular needs.

If no BufferRadusTable entry matches the location code assigned to an address, the value
assigned to BufferRadius is used.

The ValidatePropertiesX function can only validate the syntax of your entries.

Example
BUFFER_RADIUS = 50
BUFFER_RADIUS_TABLE = AS0:100[COUNTIES] | AS1:200[COUNTIES] |
A*:1000[COUNTIES]

See Also

“LogicalNames” on page 329.

“GeoStan location codes” on page 433

CacheSize

Sets the size of caching polygons.

Data Type
Integer

AddressBroker Reference Manual for Windows 323

Notes

Valid values are:

ABX_CACHE_SIZE_NONE 1

ABX_CACHE_SIZE_MEDIUM 2 (Default).

ABX_CACHE_SIZE_LARGE 3

AddressBroker Reference Manual for Windows 324

CarrtProcessed

Retrieves the number of processed records returned that were assigned Carrier Routes.

Data Type
Long.

Notes

Read-only. KeepCounts must be set to TRUE and KeepMultimatch must be set to FALSE for
counts to be meaningful.

CentroidPreference

Sets Centroid preference.

Data Type
Integer.

Notes

Valid values are:

DataType

Retrieves GeoStan data types.

Data Type
Integer.

Notes

Read-only. Valid values are:

ABX_CENTROID_NONE 1

ABX_CENTROID_ADDRESS_UNAVAILABLE 2 (Default).

ABX_CENTROID_NO_ADDRESS 3

ABX_DATA_TYPE_USPS 0

ABX_DATA_TYPE_TIGER 1

ABX_DATA_TYPE_TOMTOM 2

ABX_DATA_TYPE_SANBORN_POINT 3

AddressBroker Reference Manual for Windows 325

Datum

Sets the GeoStan datum.

Data Type
Integer.

Notes

Valid values are:

DaysRemaining

Retrieves the number of days remaining before license expiration.

Data Type
Long.

Notes

Read-only. A value of ABX_LICENSE_UNLIMITED indicates there is no license-based
time limit.

DpbcProcessed

Retrieves the number of processed records returned that were assigned Delivery Point Bar
Codes.

ABX_DATA_TYPE_TELE_ATLAS 4

ABX_DATA_TYPE_GEOSYS
Deprecated

5

ABX_DATA_TYPE_NAVTEQ 6

ABX_DATA_TYPE_TOMTOM_POINT 7

ABX_DATA_TYPE_CENTRUS_POINT 8

ABX_DATA_TYPE_AUXILIARY 9

ABX_DATA_TYPE_USER_DICTIONARY 10

ABX_DATA_TYPE_NAVTEQ_POINT 11

ABX_DATA_TYPE_MASTER_LOCATION 12

ABX_DATUM_NAD27 1

ABX_DATUM_NAD83 2 (Default).

AddressBroker Reference Manual for Windows 326

Data Type
Long.

Notes

Read-only. KEEP_COUNTS must be set to TRUE and KEEP_MULTIMATCH must be set to FALSE for
counts to be meaningful.

FieldDelimiter

Delimits fields.

Data Type
Long.

Notes

The default value is 9 (ASCII value for TAB).

FileDate

Retrieves the publish date of GSD data.

Data Type
String.

Notes

Read-only.

GeoRecordTotal

Retrieves the total number of records geocoded with the current license.

Data Type
Long.

Notes

Read-only.

AddressBroker Reference Manual for Windows 327

HostList “ActiveX only”

A list of host names. Use in client applications only.

Data Type
String.

Notes

A delimited list of host names (for more information, see “Using multiple servers” on
page 90. This is not an AddressBroker property; it is specific to the AddressBroker ActiveX
interface. Use in clients only. The default value is “localhost:4660”. Set this property before
calling InitializeX.

Example
Socket protocol
ab.HostList = “primary:1234 | secondary:1235”
ab.HostList = “centrus.com:1234 | centrus-software.com:1235”
ab.HostList = “204.180.129.200:1234 | 209.38.36.44:1235”

InitializationFileName “ActiveX only”

Sets the (optional) initialization file name.

Data Type
String.

Notes

This is not an AddressBroker property; it is specific to the AddressBroker ActiveX interface.
The default value is a null string. You must set this property before calling InitializeX.

InitList

Sets a list of logical names.

Data Type
String.

AddressBroker Reference Manual for Windows 328

Notes

This property is a tab- (\t) or pipe- (|) delimited list of logical names referencing
AddressBroker geo-demographic data files to use in your application. Logical names are
defined in AddressBroker’s GEOSTAN_PATHS, GEOSTAN_Z9_PATHS, SPATIAL_PATHS,
DEMOGRAPHICS_PATHS, and GEOSTAN_CANADA_PATHS properties. See “INIT_LIST Property” on
page 374.

When setting InitList, assign only the logical names of the geo-demographic data your
application accesses. Be sure that the GeoStan and GeoStan ZIP9 data you assign are
compatible.

InputFieldList

Sets a list of input field names.

Data Type
String.

Notes

The InputFieldList property is a delimited list of field names your application uses as
input. To find out which input field names you can assign to InputFieldList, examine the
AllInputFields as an argument. See “INPUT_FIELD_LIST Property” on page 375.

By specifying only those fields the application uses (as opposed to all of the fields in your
data), AddressBroker manages memory more efficiently, and optimally transfers data
across the network in client/server applications.

InputMode

Sets the input mode to parsed, two-line, multiline, or parsed lastline.

Data Type
Integer.

Notes

Valid values are:

ABX_INPUT_NORMAL 1 (Default).

ABX_INPUT_MULTILINE 2

ABX_INPUT_PARSED 3

ABX_INPUT_PARSED_LASTLINE 4

AddressBroker Reference Manual for Windows 329

KeepCounts

If true, save count match and location codes; otherwise do not save counts.

Data Type
Boolean.

Notes

The default value is FALSE. KEEP_COUNTS must be set to TRUE and KEEP_MULTIMATCH
must be set to FALSE for counts to be meaningful.

KeepMultimatch

If true, output all matches; otherwise output a single record only.

Data Type
Boolean.

Notes

The default value is TRUE.

LogFileName “ActiveX only”

Specifies a file to use for error messages.

Data Type
String.

Notes

This is not an AddressBroker property; it is specific to the AddressBroker ActiveX interface.
Defaults to ab.log. Set this property before calling InitializeX.

LogicalNames

Retrieves a list of all valid logical names.

Data Type
String.

AddressBroker Reference Manual for Windows 330

Notes

Read-only.

The LogicalNames read-only property is a tab- (\t) or pipe- (|) delimited list of all logical
names defined in the GEOSTAN_PATHS, GEOSTAN_Z9_PATHS, SPATIAL_PATHS and
DEMOGRAPHICS_PATHS properties. Each item in the list consists of three elements. The first
element is the logical name. It is followed by a colon (:). The last element is an alphabetic
code indicating the type of data file associated with the logical name:

– G—GeoStan
– D—Demographics
– S— Spatial+
– Z—GeoStan ZIP9
– C— GeoStan Canada
– L—GDL

The LogicalNames property is particularly useful when the logical names are unknown in
advance. This property lets you query the server for a list of logical names at run time.

MatchMode

Specifies a match strategy for ProcessRecords.

Data Type
Integer.

Notes

Valid values are:

MaximumLookups

Sets a maximum number of matched LookupRecord fields.

Data Type
Long.

ABX_MODE_EXACT 1

ABX_MODE_CLOSE 2

ABX_MODE_RELAX 3 (Default).

ABX_MODE_CASS 4

ABX_MODE_INTERACTIVE 5

AddressBroker Reference Manual for Windows 331

Notes

The default value is ten lookups. Range = 1 - 100,000.

MaximumPoints

Sets a maximum number of points to match in a Closest Site search.

Data Type
Long.

Notes

The default value is four points. Range = 1 - 100,000.

MaximumPolygons

Sets a maximum number of polygons to match in a Point in Polygon search.

Data Type
Long.

Notes

The default value is four polygons. Range = 1 - 100.

MiscCounts

Retrieves miscellaneous statistics about records processed.

Data Type
String.

Notes

Read-only. This property contains a tab- (\t) or pipe- (|) delimited list of miscellaneous
counters and their values. Each item in the list consists of three elements: the counter label,
a colon, and a numeric count. The list contains counts for all counter labels. Figure 21
provides a complete listing of counter labels.

AddressBroker Reference Manual for Windows 332

KeepCounts must be set to TRUE and KeepMultimatch must be set to FALSE for counts to be
meaningful. Misc_Counts counter labels by type.

Counts are returned in top-down left-to-right order, as listed in the table above.

MixedCase

If true, use mixed case; otherwise use all upper case.

Data Type
Boolean.

Notes

The default value is FALSE.

Successful match codes Location codes Error match codes

standardized and matched
records

address-level geocodes address not found

intersection matched records ZIP + 4 centroid level
geocodes

low-level error

non-USPS matched records block group accuracy
geocodes

GSD file not found error

address lines corrected census tract accuracy
geocodes

incorrect GSD file signature or version ID
error

street types corrected county-level accuracy
geocodes

GSD file out of date error

pre-directionals corrected geocodes based on 5-digit
ZIP centroid

city + state or ZIP not found error

post-directionals corrected geocodes based on ZIP+2
centroid

input ZIP not found in directory error

street names corrected geocodes based on ZIP + 4
centroid

input city not found in directory error

last lines corrected input city not unique in directory error

ZIPs corrected out of license area error

cities corrected license expired error

states corrected matching street not found in directory
error

ZIP + 4s corrected matching cross street not found for
intersection match error

matching ranges not found error

unresolved match error

too many possible cross streets for
intersection match error

address not found in multiline match error

AddressBroker Reference Manual for Windows 333

OffsetDistance

Sets an offset distance (in feet) to use when geocoding.

Data Type
Long.

Notes

The default value is fifty feet. Range = 0 - 5280.

OutputFieldList

Sets a list of output field names to be returned.

Syntax
ab.OutputFieldList = “Value”

where, for fields that reference to GeoStan data,
Value = FieldName | FieldName | …
or Value = FieldName \t FieldName \t …for fields

and where, for fields that reference to Spatial+ or Demographics Library data,
Value = FieldName [Logical Name] | FieldName [Logical Name] | …
or Value = FieldName [Logical Name] \t FieldName [Logical Name] \t....

Data Type
String.

Notes

This property is a delimited list of field names to be retrieved by the application.

When assigning a list of output fields, you must append a logical name, in square brackets (
[]), to each field name that requires reference to Spatial+ or Demographics Library data.
The logical name establishes the data source your application uses to generate these
output field values. See “OUTPUT_FIELD_LIST Property” on page 384.

By specifying a subset of output fields to retrieve (as opposed to all of the possible output
fields AddressBroker can generate given your input), AddressBroker manages memory
more efficiently, and optimally transfers data across the network in client/server
applications.

AddressBroker Reference Manual for Windows 334

Password “Activex Only”

Specifies a password to use when logging on to an AddressBroker server. Client
applications only.

Data Type
String.

Notes

This is not an AddressBroker property; it is specific to the AddressBroker ActiveX interface.
Used by clients only. This property must be set (for client applications) before calling
InitializeX.

RecordDelimiter

Delimits records.

Data Type
Long.

Notes

The default value is 10 (ASCII value for line feed).

Recordsmatched

Retrieves the number of matched records returned.

Data Type
Long.

Notes

Read-only. KeepCounts must be set to TRUE and KeepMultimatch must be set to FALSE
for counts to be meaningful.

RecordsProcessed

Retrieves the number of processed records returned.

AddressBroker Reference Manual for Windows 335

Data Type
Long.

Notes

Read-only.

RecordsRemaining

Retrieves the number of records that can be processed before license expiration.

Data Type
Long.

Notes

Read-only. A value of ABX_LICENSE_UNLIMITED indicates there is no license-based record
limit.

Timeout

Sets the Client time-out in seconds.

Data Type
String.

Notes

The default value is ten seconds.

TransportProtocol “ActiveX only”

Specifies a transport protocol to use. Client applications only.

Data Type
String.

Notes

The valid value for this property is “socket”. This property is not an AddressBroker property;
it is specific to the AddressBroker ActiveX interface. Case-insensitive string that specifies
the network protocol AddressBroker uses. Used by clients only. Set this property before
calling InitializeX.

AddressBroker Reference Manual for Windows 336

UserName “ActiveX only”

Specifies a user name to use when logging on to the AddressBroker server. Client
applications only.

Data Type
String.

Notes

This property is not an AddressBroker property; it is specific to the AddressBroker ActiveX
interface. Used by clients only. Set this property before calling InitializeX.

ValueDelimiter

Delimits values in multi-value fields.

Data Type
Long.

Notes

The default value is 1 (ASCII value for CTRL-A).

Version

Retrieves the AddressBroker version.

Data Type
String.

Notes

Read-only.

Z4ChangeDate

Indicates a request for address change information after the date specified.

Data Type
String.

AddressBroker Reference Manual for Windows 337

Notes

The ZIP* input fields must also be set per record in order for this request to be fulfilled. If the
ZIP + 4 of an input record is unchanged for the time period, no corresponding output record
is calculated or returned. Use MMYYYY format to specify the date.

Zip4Processed

Retrieves the number of processed records returned that were assigned ZIP + 4.

Data Type
Long.

Notes

Read-only. KeepCounts must be set to TRUE and KeepMultimatch must be set to FALSE
for counts to be meaningful.

Zip4Skipped

Retrieves the number of records skipped when using Z4_CHANGE_DATE.

Data Type
Long.

Notes

Read-only. KeepCounts must be set to TRUE and KeepMultimatch must be set to FALSE for
counts to be meaningful.

ZipProcessed

Retrieves the number of processed records returned that were assigned a 5-digit ZIP.

Data Type
Long.

Notes

Read-only. KeepCounts must be set to TRUE and KeepMultimatch must be set to FALSE
for counts to be meaningful.

AddressBroker Reference Manual for Windows 338

Errors, messages, and status logs
There are no errors, messages, or logging specific to the AddressBroker ActiveX client. All
errors and messages are currently logged by the AddressBroker server.

13 – Properties

In this chapter

Using Spatial Import 340
Initialization properties 341
Processing control properties 345
Read-only properties 352
Pre-defined property values 354

AddressBroker Reference Manual for Windows 340

This chapter provides information about an import utility that helps you retrieve attribute
information.

The chapter also contains a complete listing of AddressBroker properties. The tables list
each property by character string name. The tables also list each property’s corresponding
property ID, the property’s data type, the AddressBroker class in which it is used, status,
and a brief description including the default value (if any).

Some properties have a set of pre-defined values. Refer to “Pre-defined property values” on
page 354 for a complete list of these values.

The discussion about properties is organized into the following types:

• Initialization properties – Initialize AddressBroker.
• Processing control properties – Configure application processing.
• Read-only output properties – Report on AddressBroker’s status and processing

statistics.

Using Spatial Import
AddressBroker allows you to use an import utility located in the \AddressBroker\bin
directory to retrieve attribute information. You must create a Spatial+ object (GSB) file and
associate it with a GSA attribute file. These synchronized GSA and GSB files allow you to
retrieve an unlimited amount of attribute information that is not currently available from the
Name and Name2 fields. For instructions on using the Spatial+ import utility, see the Spatial+
Reference Manual.

SpatialImport does not process special characters. All characters between 31 and 127 on
the ASCII standard code page are valid. Other characters are not supported and causes
unpredictable behavior for attribute (GSA) data. Examples are:

• Spanish n with tilde: ñ
• Long Dash: -
• Reverse Quote: '
• Copyright: ©

Additional information

Detailed descriptions of several properties are given in the next chapter, “Properties
descriptions.”

AddressBroker Reference Manual for Windows 341

Initialization properties

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Status Description

“TIMEOUT” AB_TIMEOUT String Server
only

Client time-out in seconds.
Default = 10.

“INIT_LIST”

See page 374.
AB_INIT_LIST String Server

only
Delimited list of logical names
to be used. This property must
be set before validating
properties.

“LICENSE_PATH” AB_LICENSE_PATH String Server
only

Path and file name of license
file.

“LICENSE_KEY” AB_LICENSE_KEY String Server
only

License key.

“STATUS_LOG” AB_STATUS_LOG String Server
only

Path and filename of status
log file or for “CONSOLE” to
display to screen,
“EVENTLOG” to send to event
log (on Windows systems) or
syslog (on UNIX systems.)
Default = console.

“REQUEST_LOG” AB_REQUEST_LOG String Server
only

Path and filename of the
request log file, which contains
a summary of each request
sent to the server.

“REQUEST_LOG_OPTIONS” AB_REQUEST_LOG_OPTIO
NS

String Server
only

Modifies REQUEST_LOG.
Specifies the format of the
request log and the delimiter
that separates fields.

“LOG_ROLLOVER” AB_LOG_ROLLOVER Long Server
only

Sets age and size criteria for
the status and request log files
for the periodic rollover of file
names.
Default=NORMAL

“IP_FILTER” AB_IP_FILTER String Server
only

Allows or denies IP addresses
access to the server.

“CLOSEST_SITE_FILTER” AB_CLOSEST_SITE_FILT
ER

String Client
only

Limits the number of returned
ClosestSite records by a user-
specified filter.
Value=filter criteria

AddressBroker Reference Manual for Windows 342

“STATUS_LEVEL” AB_STATUS_LEVEL String Server
only

Not supported in the Java API.
Sets the type of error and
status messages returned.
FATAL—fatal errors, errors
and warnings.
ERROR—errors and warnings
only.
WARN— warnings only.
INFO—all informational
messages.
NONE—none.
DEBUG—status messages,
development only.
SERVER—returns server
level debug messages
(default).

“GEOSTAN_PATHS”

See page 371.
AB_GEOSTAN_PATHS String Server

only
Logical names, path and
directory names of GeoStan
data. This property must be
set before validating
properties in server
implementations.

“GEOSTAN_Z9_PATHS”

See page 371.
AB_GEOSTAN_Z9_PATHS String Server

only
Logical names, path and file
name of GeoStan ZIP + 4
data. This property must be
set before validating
properties in server
implementations. Server only.

“GEOSTAN_Z5_PATHS” AB_GEOSTAN_Z5_PATHS String Server
only

Logical names, path and file
name of GeoStan ZIP data.
This property must be set
before validating properties in
server
implementations.Server only.

“GEOSTAN_CANADA_PATHS
”

AB_GEOSTAN_CANADA_PA
TH

String Server
only

Logical names, path and
directory name of GeoStan
Canada data. This property
must be set before validating
properties in server
implementations. Server only.

“GEOSTAN_TMP_PATH” AB_GEOSTAN_TMP_PATH String Server
only

Logical names, path and
directory name of a temporary
directory for GeoStan data to
be used with GDL. This
property must be set before
validating properties in server
implementations.

“DEMOGRAPHICS_PATHS”

See page 368.
AB_DEMOGRAPHICS_PATH
S

String Server
only

Logical names, path and file
name of DemoLib data. This
property must be set before
validating properties in server
implementations. Server only.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Status Description

AddressBroker Reference Manual for Windows 343

“GDL_SPATIAL_PATHS” AB_GDL_SPATIAL_PATHS String Server
only

DEPRECATED. Logical
names, path and file name of
Geographic Determination
Library data. This property
must be set before validating
properties in server
implementations.Server only.

“SPATIAL_PATHS” AB_SPATIAL_PATHS String Server
only

Logical names, path and file
name of Spatial+ data. This
property must be set before
validating properties in server
implementations. Server only.

NOTE: You can have
multiple SPATIAL_PATHS
instances in your file. These
instances are additive:
AddressBroker uses the
values listed in each
instance.

“CACHE_SIZE” AB_CACHE_SIZE 32-bit
integer

Server
only

Size of caching polygons. See
“Pre-defined Property Values”
table, page 354.

“RECORD_DELIMITER” AB_RECORD_DELIMITER 32-bit
integer

Client
and
Server

Delimits records. Default = LF
(line feed).

“FIELD_DELIMITER” AB_FIELD_DELIMITER 32-bit
integer

Client
and
Server

Delimits fields. Default = TAB.

“VALUE_DELIMITER” AB_VALUE_DELIMITER 32-bit
integer

Client
and
Server

Delimits values in multi-value
fields. Default = CTRL-A.

“HOTSWAP_DIRECTORY” AB_HOTSWAP_DIRECTORY String Server
only

Path and name of the directory
where the server administrator
places the GSB files that
AddressBroker loads for hot
swap data files.

“WORKING_DIRECTORY” AB_WORKING_DIRECTORY String Server
only

Path and name of the directory
where the server holds GSB
files that the server is currently
processing.

“DISCARD_DIRECTORY” AB_DISCARD_DIRECTORY String Server
only

Path and name of the directory
where the server places old
versions of the GSB files.

“ERROR_DIRECTORY” AB_ERROR_DIRECTORY String Server
only

Path and name of the directory
where the server places GSB
files that failed verification.

“POLLING_TIME” AB_POLLING_TIME String Client
only

Time interval, in seconds,
between successive polls of
the hot swap directory. Valid
range is 1 to 86400 seconds,
with a default of 10.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Status Description

AddressBroker Reference Manual for Windows 344

“MAX_OPEN_GSBS”

See page 381.
AB_MAX_OPEN_GSBS Long Server

only
Maximum number of open
GSB files (1-4096). Default=0.
For Linux systems only.

“GS_MEMORY_LIMIT”

See page 373.
AB_GSMEM_LIMIT Long Server

only
NOTE: This property only
applies to 64-bit
applications. For 32-bit
applications, data files are
not memory-mapped and
attempts to set this property
will be ignored.

When AddressBroker is
initialized, it will memory-map
as many data files into
memory as the
GS_MEMORY_LIMIT allows.
0- 256000 megabytes.
Default=16000 megabytes.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Status Description

AddressBroker Reference Manual for Windows 345

Processing control properties

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

"ADDR_POINT_INTERP" AB_ADDR_POINT_INTERP Boolean True turns on address point interpolation
in GeoStan. False turns it off.

"ALTERNATE_LOOKUP" AB_ALTERNATE_LOOKUP Boolean True sets find property
GS_FIND_ALTERNATE_LOOKUP to
true in GeoStan. False turns it off.
Sets values for
GS_FIND_ALTERNATE_LOOKUP. The
values are:
• 0 is GS_PREFER_UNDEFINED -

undefined.
• 1 is
GS_PREFER_STREET_LOOKUP -
Matches to the address line, if a match
is not made, then GeoStan matches to
the Firm name line.

• 2 is GS_PREFER_FIRM_LOOKUP -
matches to the Firm name line, if a
match is not made, then GeoStan
matches to address line.

• 3 is GS_STREET_LOOKUP_ONLY -
default value if
GS_FIND_ALTERNATE_LOOKUP
not in the list.

"DPV_DATA_ACCESS" AB_DPV_DATA_ACCESS Long DPV data access options are 1-4, see
the following:
• 1 = DPV full data loaded in buffered

memory
• 2 = DPV full data loaded completely

into memory
• 3 = DPV split data loaded in buffered

memory
• 4 = DPV flat data loaded completely

into memory

"FIRST_LETTER_EXPANDED" AB_FIRST_LETTER_EXPA
NDED

Boolean True sets find property
GS_FIND_FIRST_LETTER_EXPANDE
D to true in GeoStan. False turns it off.

"MUST_MATCH_ADDR_NUM" AB_MUST_MATCH_ADDR_N
UM

Boolean True sets find property
GS_FIND_MUST_MATCH_ADDRNUM to
true in GeoStan. False turns it off.
Usable match modes: Custom

“ADDRESS_PREFERENCE” AB_ADDRESS_PREFERENC
E

32-bit
integer

Address preference.
See the table “Pre-defined
property values” on page 354.

AddressBroker Reference Manual for Windows 346

“ALWAYS_FIND_CANDIDATES
”

AB_ALWAYSFINDCANDIDA
TES

Boolean Enables AddressBroker to keep multiple
candidate records when matching with
point-level data for use with centerline
matching. Used to return multiple
candidate records when street locator
matching is enabled. Additional
information can be obtained about
matching street segments for both a
single or multiple match.
Not valid when using the reverse
geocoding options.
TRUE = Keep candidates
FALSE = Default. Do not keep
candidates

“APN_DATA” AB_APN_DATA Boolean TRUE = Load and use Centrus Points
APN data
FALSE = Don’t load Centrus Points APN
data

“APPROXPBKEY” AB_APPROX_PBKEY Boolean When using the Master Location Dataset
(MLD), when a match is not made to an
MLD record, this feature returns the
pbKey of the nearest MLD point location.
The search radius for the nearest MLD
point location can be configured to 0-
5280 feet. The default is 150 feet.
This type of match returns a pbKey with
a leading ‘X’ rather than a ‘P’, for
example, X00001XSF1IF.
For more information, see
“PreciselyID Fallback” on
page 20.
TRUE = Enables PBKey Fallback.
FALSE = Disables PBKey
Fallback.(default)

“BUFFER_RADIUS_TABLE” AB_BUFFER_RADIUS_TAB
LE

String Table of location codes vs. Spatial buffer
radii or widths
Overrides BUFFER_RADIUS.

“BUFFER_RADIUS” AB_BUFFER_RADIUS 32-bit
integer

Spatial buffer (radius or width) in feet to
apply to features in the object file.
Default = 0; range = 0 - 5280000.

“BUILDING_SEARCH” AB_BUILDING_SEARCH Boolean TRUE = Enables matching to building
and business names entered in the
address line.
FALSE = Disables matching to building
and business names entered in the
address line (default).

“CENTERLINE_OFFSET” AB_CENTERLINE_OFFSET 32-bit
integer

Distance, in feet, to offset the centerline
geocode from the street centerline
toward the parcel centroid. Default is 0
feet, which returns the street centerline
geocode. Any value which takes the
geocode past the parcel centroid will
return the parcel centroid. Range = 0 -
5280.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

AddressBroker Reference Manual for Windows 347

“CENTROID_PREFERENCE” AB_CENTROID_PREFEREN
CE

32-bit
integer

Centroid preference.
See the table “Pre-defined
property values” on page 354.

“CLOSESTPOINT” AB_CLOSEST_POINT Boolean Specifies whether matching should be
done to the closest feature or point
address.
TRUE = Matches to the closest point
address within the search radius.
FALSE = Default. Matches to the
closest feature including street segments
and intersections in addition to address
points.

NOTE: This feature requires that at
least one points data set and one
streets data set are loaded; otherwise,
the match will be made to the closest
feature.

“COORDINATE_TYPE” AB_COORDINATE_TYPE 32-bit
integer

Determines format of coordinate data.
Default = AB_COORD_INTEGER
See the table “Pre-defined
property values” on page 354.

“CORRECT_LAST_LINE” AB_CORRECT_LAST_LINE Boolean True corrects elements of the output last
line, providing a good ZIP Code or close
match on the soundex even if the
address would not match or was non-
existent.

“DATUM” AB_DATUM 32-bit
integer

GeoStan datum.
See the table “Pre-defined
property values” on page 354.

“DPV_DATA_PATH” AB_DPV_DATA_PATH String The file and path of the DPV data.

“DPV_MAILER_ADDRESS” AB_DPV_MAILER_ADDRES
S

String The address of your company. Used for
the DPV false-positive report.

“DPV_MAILER_CITY” AB_DPV_MAILER_CITY String The city where your company resides.
Used for the DPV false-positive report.

“DPV_MAILER_COMPANY” AB_DPV_MAILER_COMPAN
Y

String The name of your company. Used for the
DPV false-positive report.

“DPV_MAILER_STATE” AB_DPV_MAILER_STATE String The state where your company resides.
Used for the false-positive report.

“DPV_MAILER_ZIP9” AB_DPV_MAILER_ZIP9 String The ZIP + 4 where your company is
located. Used for the DPV false-positive
report.

“DPV_REPORT_FILE” AB_DPV_REPORT_FILE String The location and file name of the DPV
false-positive report.

“DPV_SECURITY_KEY” AB_DPV_SECURITY_KEY String The security key used to access the DPV
functionality.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

AddressBroker Reference Manual for Windows 348

“ELEVATION_DATA” AB_ELEVATION_DATA Boolean TRUE = Load and use Centrus Points
parcel elevation data
FALSE = Don’t load Centrus Points
parcel elevation data

“FALLBACK_GEOGRAPHIC” AB_FALLBACK_GEOGRAPH
IC

Boolean True allows for the cascading geocoding
of CityCountyState. False turns it off.

“GDL_BUFFER_WIDTH” AB_GDL_BUFFER_WIDTH 32-bit
integer

The distance used to buffer a street
segment (feet).
Default = 100; range = 1 - MAX
(4,294,967,295).

“GDL_MAXIMUM_LINES” AB_GDL_MAXIMUM_LINES 32-bit
integer

Maximum number of lines to match in
GDL nearest line search.
Default = 4; range = 1 - MAX.

“GDL_MAXIMUM_POINTS” AB_GDL_MAXIMUM_POINT
S

32-bit
integer

Maximum number of points to match
GDL nearest point search.
Default = 4; range = 1 - MAX.

“GDL_MAXIMUM_POLYGONS” AB_GDL_MAXIMUM_POLYG
ONS

32-bit
integer

Maximum number of polygons to match
in GDL nearest polygon search.
Default = 4; range = 1 - MAX.

“GDL_SEARCH_DISTANCE_TA
BLE”

AB_GDL_SEARCH_DISTAN
CE_TABLE

String Table of GDL logical names versus GDL
search distances (feet). Overrides
GDL_SEARCH_DISTANCE.

“GDL_SEARCH_DISTANCE” AB_GDL_SEARCH_DISTAN
CE

32-bit
integer

GDL search distance (feet). Default =
5280; range = 1 - MAX.

“INPUT_FIELD_LIST”

See page 375.
AB_INPUT_FIELD_LIST String Delimited list to be used as input field

names.

“INPUT_MODE” AB_INPUT_MODE 32-bit
integer

Two-line, two-line parsed lastline,
parsed, multiline input mode, or reverse
APN.
See the table “Pre-defined
property values” on page 354.

“KEEP_COUNTS” AB_KEEP_COUNTS Boolean TRUE = Count match and location
codes.
FALSE = Do not count (default).

“KEEP_MULTIMATCH” AB_KEEP_MULTIMATCH Boolean TRUE = Output all matches (default).
FALSE = Output single record only.

“LACS_DATA_PATH” AB_LACS_DATA_PATH String The file and path of the LACSLink data.

“LACS_MAILER_ADDRESS” AB_LACS_MAILER_ADDRE
SS

String The address of your company. Used for
the LACSLink false-positive report.

“LACS_MAILER_CITY” AB_LACS_MAILER_CITY String The city where your company resides.
Used for the LACSLink false-positive
report.

“LACS_MAILER_COMPANY” AB_LACS_MAILER_COMPA
NY

String The name of your company. Used for the
LACSLink false-positive report.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

AddressBroker Reference Manual for Windows 349

“LACS_MAILER_STATE” ABA_LACS_MAILER_STAT
E

String The state where your company resides.
Used for the false-positive report.

“LACS_MAILER_ZIP9” AB_LACS_MAILER_ZIP9 String The ZIP + 4 where your company is
located. Used for the LACSLink false-
positive report.

“LACS_REPORT_FILE” AB_LACS_REPORT_FILE String The location and file name of the
LACSLink false-positive report.

“LACS_SECURITY_KEY” AB_LACS_SECURITY_KEY String The security key used to access the
LACSLink functionality.

“MATCH_CODE_EXTENDED” AB_MATCH_CODE_EXTEND
ED

Boolean Specifies whether to return the Extended
Match Code (3rd hex digit). For more
information, see “Understanding
Extended Match Codes” on
page 43.
TRUE = Return Extended Match Code
FALSE= Default. Extended Match Code
disabled

“MATCH_MODE” AB_MATCH_MODE 32-bit
integer

Determines match strategy for
ProcessRecords.
See the table “Pre-defined
property values” on page 354.

“MAXIMUM_LOOKUPS” AB_MAXIMUM_LOOKUPS 32-bit
integer

Maximum number of matched
LookupRecord fields.
Default = 10; range = 1 - 100.

“MAXIMUM_POINTS” AB_MAXIMUM_POINTS 32-bit
integer

Maximum number of points to match in a
Closest Site search.
Default = 4; range = 1 - 100,000.

“MAXIMUM_POLYGONS” AB_MAXIMUM_POLYGONS 32-bit
integer

Maximum number of polygons to match
in a Point in Polygon search. Default = 4;
range = 1 - 100,000.

“MIXED_CASE” AB_MIXED_CASE Boolean TRUE = Mixed case.
FALSE = Upper case (default).

“MUST_MATCH_CITY" AB_MUST_MATCH_CITY Boolean Default = FALSE.
Usable match modes: Custom

“MUST_MATCH_MAINADDR" AB_MUST_MATCH_MAINAD
DR

Boolean Default = FALSE.
Usable match modes: Custom

“MUST_MATCH_STATE" AB_MUST_MATCH_STATE Boolean Default = FALSE.
Usable match modes: Custom

“MUST_MATCH_ZIPCODE" AB_MUST_MATCH_ZIPCOD
E

Boolean Default = FALSE.
Usable match modes: Custom

“OFFSET_DISTANCE” AB_OFFSET_DISTANCE 32-bit
integer

Geocode offset in feet. Default = 50;
range = 0 - 5280.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

AddressBroker Reference Manual for Windows 350

“OUTPUT_FIELD_LIST”

See page 384.
AB_OUTPUT_FIELD_LIST String Delimited list of output field names to be

returned (with logical names, if any).
Note: You can have multiple
OUTPUT_FIELD_LIST instances in
your file. These instances are additive:
AddressBroker uses the values listed in
each instance.

“PREFER_ZIP_OVER_CITY” AB_PREFER_ZIP_OVER_C
ITY

Boolean Allows a user to prefer candidates that
match to input ZIP over candidates that
match to input city. GeoStan creates
multiple search areas when input city
and ZIP do not correspond and this
feature helps establish how the
candidates should be scored.

“RANGED_ADDRESS” AB_RANGED_ADDRESS Boolean True sets find property
GS_FIND_ADDRESS_RANGE to true in
GeoStan. False turns it off.

“RDI_DATAPATH” AB_RDI_DATAPATH String Path to RDI data; string value is
RDIDATAPATH

“REVERSE_GEOCODE” AB_REVERSE_GEOCODE Boolean Indicates if AddressBroker reverse
geocodes input latitudes and longitudes.
TRUE = Reverse geocodes
FALSE = Default. Does not reverse
geocode

“REVGEO_SEARCH_DISTANCE
”

AB_REVGEO_SEARCH_DIS
TANCE

32-bit
integer

Maximum distance to search (feet) for a
reverse geocode. Default = 150; range =
0 - 5280.

“SEARCH_DISTANCE” AB_SEARCH_DISTANCE 32-bit
integer

Maximum distance to search (feet) and
closest site search.
Default = 366,000 feet (approx. 69 miles
or 1 degree).

“SQUEEZE_DIST” AB_SQUEEZE_DIST String Distance, in feet, to offset address-level
geocodes from the street endpoints.
Default is 50 feet.
If the squeeze distance is more than half
the segment length, sets the distance to
the midpoint of the segment.

“STREET_CENTROID” AB_STREET_CENTROID Boolean Specifies whether to return a street
segment geocode as an automatic
geocoding fallback.
TRUE = Return street segment geocode
FALSE = Default. Street locator disabled

“SUITE_LINK_DATA_PATH” AB_SUITE_LINK_DATAPA
TH

String SuiteLink data path.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

AddressBroker Reference Manual for Windows 351

“THROW_LEVEL”

See page 228.
AB_THROW_LEVEL String Determines the error level at which an

exception is thrown:
FATAL—fatal errors, errors and
warnings.
ERROR—errors and warnings only.
WARN— warnings only.
INFO—all informational messages.
NONE—none.
DEBUG—status messages, development
only.
When a status condition occurs a Status
object is built. If the status object type
meets or exceeds the THROW_LEVEL
setting, the status object is 'thrown'.
Default = ERROR.
Not supported in the Java API.

“Z4_CHANGE_DATE” AB_Z4_CHANGE_DATE String Indicates a request for any address
changes after the date provided. The
ZIP* input field must also be set per
record in order for this request to be
fulfilled. Use “MMYYYY” to specify the
date. If the ZIP + 4 of an input record is
unchanged for the time period, no
corresponding output record is
calculated or returned. A US.gsl file is
required for this functionality. It must
reside in the path assigned to your
GEOSTAN_PATHS property.

"ZIP_PBKEYS"

See page 17.
AB_ZIP_PBKEYS Boolean When set to TRUE, opens the file

(zipsmld.gsd) needed to return pbKeys
for ZIP centroid locations in Master
Location Data.
When an address point is not available
for an address in Master Location Data,
this option returns a ZIP centroid and the
pbKeyTM unique identifier, which can be
used to unlock additional information
about an address using GeoEnrichment
data.
Default = FALSE

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

AddressBroker Reference Manual for Windows 352

Read-only properties

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

“LOGICAL_NAMES”

See page 380.
AB_LOGICAL_NAMES String Tab-delimited list of all valid logical names

determined by the values assigned to
AddressBroker’s path properties.
ValidateProperties must be called before
retrieving the value stored in this property.

“ALL_INPUT_FIELDS” AB_ALL_INPUT_FIELDS String Tab-delimited list of all valid input field names
based on value of INIT_LIST property.
ValidateProperties must be called before
retrieving the value stored in this property.

“ALL_OUTPUT_FIELDS
”

See page 384.

AB_ALL_OUTPUT_FIELD
S

String Tab-delimited list of all valid output field names
based on value of INIT_LIST property.
ValidateProperties must be called before
retrieving the value stored in this property.

“VERSION” AB_VERSION String AddressBroker version.

“FILE_DATE” AB_FILE_DATE String Publish date of the GSD data.

“DATA_TYPE” AB_DATA_TYPE 32-bit
integer

GeoStan data type.
See the table “Pre-defined property
values” on page 354.

“RECORDS_REMAINING
”*

AB_RECORDS_REMAININ
G

32-bit
integer

Records remaining before license expiration.
See the table “Pre-defined property
values” on page 354.

“DAYS_REMAINING” AB_DAYS_REMAINING 32-bit
integer

Days remaining before license expiration.
See the table “Pre-defined property
values” on page 354.

“GEO_RECORD_TOTAL” AB_GEO_RECORD_TOTAL 32-bit
integer

Total number of records geocoded with current
license.

“RECORDS_PROCESSED
”*

AB_RECORDS_PROCESSE
D

32-bit
integer

Number of processed records returned.

“RECORDS_MATCHED”* AB_RECORDS_MATCHED 32-bit
integer

Number of matched records returned.

“CARRT_PROCESSED”* AB_CARRT_PROCESSED 32-bit
integer

Number of processed records returned that were
assigned Carrier Routes.

“DPBC_PROCESSED”* AB_DPBC_PROCESSED 32-bit
integer

Number of processed records returned that were
assigned
Delivery Point Bar Codes.

“MISC_COUNTS”*

See page 382.
AB_MISC_COUNTS String Counts of match and location codes of processed

records.

“ZIP_PROCESSED”** AB_ZIP_PROCESSED 32-bit
integer

Number of processed records returned that were
assigned 5-digit ZIP.

“ZIP4_PROCESSED”* AB_ZIP4_PROCESSED 32-bit
integer

Number of processed records returned that were
assigned ZIP + 4.

AddressBroker Reference Manual for Windows 353

“ZIP4_SKIPPED”* AB_ZIP4_SKIPPED 32-bit
integer

Number of records skipped when using
Z4_CHANGE_DATE.

 * KEEP_COUNTS must be set to TRUE and KEEP_MULTIMATCH must be set to FALSE for counts to be meaningful.

String Property Name

Property ID AB_* =
C/C++/.NET/Java
Property ID ABX_* =
ActiveX

Data
Type Description

AddressBroker Reference Manual for Windows 354

Pre-defined property values

String Property Namea

C, C++,
.NET, Java
Value

ActiveX
Value Descriptionb

“INPUT_MODE” 0 1 Default. For input fields, use AddressLine,
AddressLine2, LastLine or pbKey.
Defined constants: AB_INPUT_NORMAL or
ABX_INPUT_NORMAL (ActiveX).

1 2 Multiline input. For input fields, use Line1—Line6.
Defined constants: AB_INPUT_MULTILINE or
ABX_INPUT_MULTILINE (ActiveX)
Note: GeoStan Canada does not support multiline
processing.

3 4 For input fields, use AddressLine, AddressLine2,
City, State, and any ZIP field or pbKey.
Defined constants: AB_INPUT_PARSED_LASTLINE or
ABX_INPUT_PARSED_LASTLINE (ActiveX).

“MATCH_MODE” 0 1 Exact match required. Generates the fewest number of
possibles to search.
Defined constants: AB_MODE_EXACT or
ABX_MODE_EXACT (ActiveX)

1 2 Very close match required. Generates a moderate
number of possibles to search.
Defined constants: AB_MODE_CLOSE or
ABX_MODE_CLOSE (ActiveX)

2 3 Default. Close match required. Generates the largest
number of possibles to search.
Defined constants: AB_MODE_RELAX or
ABX_MODE_RELAX (ActiveX)

4 4 This setting imposes additional match rules.
Defined constants: AB_MODE_CASS or
ABX_MODE_CASS (ActiveX)

NOTE: CASS mode is not supported in single-line
address matching.

8 5 For interactive single-line address matching only.
Defined constants: AB_MODE_INTERACTIVE or
ABX_MODE_INTERACTIVE (ActiveX)

7 none Allows applications to specify individual “must match”
field matching rules for address number, address line,
city, ZIP code, and state.
Defined constants: AB_MODE_CUSTOM

NOTE: Custom match mode, and consequently the
“MUST_MATCH_*” parameters, are not supported in
single-line address matching.

“DATUM” 0 1 NAD27.
Defined constants: AB_DATUM_NAD27 or
ABX_DATUM_NAD27 (ActiveX)

AddressBroker Reference Manual for Windows 355

1 2 NAD83.
Defined constants: AB_DATUM_NAD83 or
ABX_DATUM_NAD83 (ActiveX)

“CENTROID_PREFERENCE
”

0 1 Assign address-level geocodes only.
Defined constants: AB_CENTROID_NONE or
ABX_CENTROID_NONE (ActiveX)

1 2 Default. Use if no address is available.
Defined constants:
AB_CENTROID_ADDRESS_UNAVAILABLE or
ABX_CENTROID_ADDRESS_UNAVAILABLE (ActiveX)

2 3 Use ZIP centroid geocoding only—no address matching.
Defined constants:AB_CENTROID_NO_ADDRESS or
ABX_CENTROID_NO_ADDRESS (ActiveX)

“ADDRESS_PREFERENCE” 0 1 Default. Select bottommost street address.
Defined constants: AB_ADDRESS_BOTTOM or
ABX_ADDRESS_BOTTOM (ActiveX)

1 2 Prefer PO Box.
Defined constants: AB_ADDRESS_POBOX or
ABX_ADDRESS_POBOX (ActiveX)

2 3 Prefer street address.
Defined constants: AB_ADDRESS_STREET or
ABX_ADDRESS_STREET (ActiveX)

 “COORDINATE_TYPE”

See page 67.
0 N/A Default. Coordinate is a fixed point value represented as

an integer one million times (six decimal places) larger
than the actual number. Example: 40123456 =
“40.123456”
Defined constants: AB_COORD_INTEGER or
ABX_COORD_INTEGER (ActiveX)

1 N/A A floating point decimal value.
Example: 40.123456 = “40.123456”
Defined constants: AB_COORD_FLOAT or
ABX_COORD_FLOAT (ActiveX)

“RECORDS_REMAINING” Read-only. Read-only. Number of records remaining or ‘unlimited’. License-
based.
Defined constants: AB_LICENSE_UNLIMITED or
ABX_LICENSE_UNLIMITED (ActiveX)

“DAYS_REMAINING” Read-only. Read-only. Number of days remaining or ‘unlimited’. License-based.
Defined constants: AB_LICENSE_UNLIMITED or
ABX_LICENSE_UNLIMITED (ActiveX)

“DATA_TYPE” 0
Read-only.

0
Read-only.

USPS
Defined constants: AB_DATA_TYPE_USPS or
ABX_DATA_TYPE_USPS (ActiveX)

1
Read-only.

1
Read-only.

TIGER/Centrus Enhanced
Defined constants: AB_DATA_TYPE_TIGER or
ABX_DATA_TYPE_TIGER (ActiveX)

String Property Namea

C, C++,
.NET, Java
Value

ActiveX
Value Descriptionb

AddressBroker Reference Manual for Windows 356

2
Read-only.

2
Read-only.

TOMTOM
Defined constants: AB_DATA_TYPE_TOMTOM or
ABX_DATA_TYPE_TOMTOM (ActiveX)

3
Read-only.

3
Read-only.

DEPRECATED
SANBORN_POINT
Defined constants: AB_DATA_TYPE_SANBORN or
ABX_DATA_TYPE_SANBORN (ActiveX)

4
Read-only.

4
Read-only.

DEPRECATED
TELE_ATLAS
Defined constants: AB_DATA_TYPE_TELE_ATLAS or
ABX_DATA_TYPE_TELE_ATLAS (ActiveX)

5
Read-only.

5
Read-only.

DEPRECATED
GEOSYS
Defined constants: AB_DATA_TYPE_GEOSYS or
ABX_DATA_TYPE_GEOSYS (ActiveX)

6
Read-only.

6
Read-only.

HERE
Defined constants: AB_DATA_TYPE_NAVTEQ or
ABX_DATA_TYPE_NAVTEQ (ActiveX)

7
Read-only.

7
Read-only.

TOMTOM_POINT
Defined constants:
AB_DATA_TYPE_TOMTOM_POINT or
ABX_DATA_TYPE_TOMTOM_POINT (ActiveX)

8
Read-only.

8
Read-only.

CENTRUS POINT
Defined constants:
AB_DATA_TYPE_CENTRUS_POINT or
ABX_DATA_TYPE_CENTRUS_POINT (ActiveX)

9
Read-only.

9
Read-only.

AUXILIARY FILE
Defined constants:
AB_DATA_TYPE_AUXILIARY_POINT or
ABX_DATA_TYPE_AUXILIARY_POINT (ActiveX)

10
Read-only.

10
Read-only.

USER DICTIONARY
Defined constants:
AB_DATA_TYPE_USER_DICTIONARY or
ABX_DATA_TYPE_USER_DICTIONARY (ActiveX)

11
Read-only.

11
Read-only.

HERE POINT
Defined constants:
AB_DATA_TYPE_NAVTEQ_POINT or
ABX_DATA_TYPE_NAVTEQ_POINT (ActiveX)

12
Read-only

12
Read-only

MASTER LOCATION DATA
Defined constants:
AB_DATA_TYPE_MASTER_LOCATION or
ABX_DATA_TYPE_MASTER_LOCATION (ActiveX)

“CACHE_SIZE” 0 1 No cache used.
Defined constants: AB_CACHE_SIZE_NONE or
ABX_CACHE_SIZE_NONE (ActiveX)

String Property Namea

C, C++,
.NET, Java
Value

ActiveX
Value Descriptionb

AddressBroker Reference Manual for Windows 357

1 2 Default. Moderate cache—15 objects.
Defined constants: AB_CACHE_SIZE_MEDIUM or
ABX_CACHE_SIZE_MEDIUM (ActiveX)

2 3 Large cache —20 objects.
Defined constants: AB_CACHE_SIZE_LARGE or
ABX_CACHE_SIZE_LARGE (ActiveX)

a ActiveX string property names do not include the underscore.
b “Defined constants” are programmatic aids that may be substituted for the associated value in C, C++, .NET, Java, or

ActiveX.

String Property Namea

C, C++,
.NET, Java
Value

ActiveX
Value Descriptionb

14 – Properties
descriptions

In this chapter

Quick reference 359
ALL_INPUT_FIELDS (read-only) Property 361
ALL_OUTPUT_FIELDS (read-only) Property 363
BUFFER_RADIUS Property 363
BUFFER_RADIUS_TABLE Property 364
CLOSEST_SITE_FILTER Property 367
DEMOGRAPHICS_PATHS Property 368
DPV_DATA_PATH Property 368
DPV_SECURITY_KEY Property 369
GDL_SPATIAL_PATHS Property 369
GEOSTAN_CANADA_PATHS Property 370
GEOSTAN_PATHS Property 371
GEOSTAN_Z9_PATHS Property 371
GS_MEMORY_LIMIT Property 373
INIT_LIST Property 374
INPUT_FIELD_LIST Property 375
INPUT_MODE Property 375
IP_FILTER Property 376
LACS_DATA_PATH Property 378
LACS_SECURITY_KEY Property 378
LOG_ROLLOVER (server-only) Property 379
LOGICAL_NAMES (read-only) Property 380
MAX_OPEN_GSBS Property 381
MISC_COUNTS (read-only) Property 382
OUTPUT_FIELD_LIST Property 384
REQUEST_LOG Property 386
REQUEST_LOG_OPTIONS Property 387
SPATIAL_PATHS Property 388
STATUS_LOG Property 389

AddressBroker Reference Manual for Windows 359

This chapter provides detailed descriptions of selected AddressBroker properties. The
included properties are either common to most AddressBroker applications, or require more
discussion than fit into Chapter 13, "Properties". Each property discussion includes a
summary statement, a syntax statement, and a description of the property’s parameters and
how the property is used. Most include a descriptive code fragment. Properties included in
this section are listed alphabetically. For a complete list of AddressBroker properties, see
Chapter 13, "Properties".

Quick reference
ALL_INPUT_FIELDS (read-only) Property

Delimited list of all valid input field names.

ALL_OUTPUT_FIELDS (read-only) Property

Delimited list of all valid output field names.

BUFFER_RADIUS Property

Spatial buffer (radius or width) to apply to features in an object file.

BUFFER_RADIUS_TABLE Property

Delimited list of Spatial+ buffer radius entries.

CLOSEST_SITE_FILTER Property

Limits the number of records by a user-specified filter.

DEMOGRAPHICS_PATHS Property

Delimited list of logical names, paths, and file names of Demographics data.

DPV_DATA_PATH Property

Specifies the file name and path for the Delivery Point Validation (DPV®) data.

DPV_SECURITY_KEY Property

Specifies the security key to use the DPV functionality.

GDL_SPATIAL_PATHS Property

Deprecated. Delimited list of logical names and directory paths to GDL data.

GEOSTAN_CANADA_PATHS Property

Delimited list of logical names and directory paths to GeoStan Canada data.

GEOSTAN_PATHS Property

AddressBroker Reference Manual for Windows 360

Delimited list of logical names and directory paths to GeoStan data.

GEOSTAN_Z9_PATHS Property

Delimited list of logical names and file names to GeoStan ZIP Code data.

GS_MEMORY_LIMIT Property

Specifies the maximum amount of memory to use for memory-mapping data files. (for
64-bit applications only).

INIT_LIST Property

Delimited list of logical names.

INPUT_FIELD_LIST Property

Delimited list of field names.

INPUT_MODE Property

Defines how the application address input is organized and formatted.

IP_FILTER Property

Allows or denies access to individual or groups of IP addresses to the AddressBroker
server. Set by the server administrator, rather than by the client programmer.

LACS_DATA_PATH Property

Specifies the file name and path for the LACSLink® data.

LACS_SECURITY_KEY Property

Specifies the security key to use the LACSLink functionality.

LOG_ROLLOVER (server-only) Property

Sets age and size criteria for the status and request log files for the periodic rollover of
file names so that the log file does not become too large or too old.

LOGICAL_NAMES (read-only) Property

Tab-delimited list of logical names.

MAX_OPEN_GSBS Property

Specifies the maximum number of open GSB files (for Linux systems only).

MISC_COUNTS (read-only) Property

Tab-delimited list of miscellaneous counts.

AddressBroker Reference Manual for Windows 361

OUTPUT_FIELD_LIST Property

Delimited list of fields names to be retrieved as output.

RDI_DATAPATH Property

Specifies the file name and path for the Residential Delivery Indicator (RDI™) data.

REQUEST_LOG Property

The log file that contains summaries of requests (client interactions with the server). Set
by the server administrator, rather than by the client programmer.

REQUEST_LOG_OPTIONS Property

Specifies the format of the request log and the delimiter that separates fields.

SPATIAL_PATHS Property

Delimited list of logical names, paths, and file names of Spatial+ data.

STATUS_LOG Property

The log file that contains general server events. Set by the server administrator, rather
than by the client programmer.

ALL_INPUT_FIELDS (read-only) Property

Delimited list of all valid input field names.

Syntax
ab.GetProperty (“ALL_INPUT_FIELDS”, buffer, buffersize)
where buffer returns Value, and Value = FieldName \t FieldName \t …

Type

String list of field names.

Notes

The ALL_INPUT_FIELDS read-only property holds a tab- (\t) delimited list of all valid input
field names you can use in your program. The list returned in ALL_INPUT_FIELDS is
dependent on the values set in several other properties including INIT_LIST, GEOSTAN_PATHS,
GEOSTAN_Z9_PATHS, GEOSTAN_Z5_PATHS, GEOSTAN_CANADA_PATHS, SPATIAL_PATHS,
DEMOGRAPHICS_PATHS, and INPUT_MODE.

AddressBroker Reference Manual for Windows 362

C++ Example
ab.SetProperty (“GEOSTAN_PATHS”,
“[GEOSTAN]C:\Program Files\Precisely\cd2tiger |
[GDT] C:\Program Files\Precisely\cd2gdt”);
ab.SetProperty (“GEOSTAN_Z9_PATHS”,
“[GEOSTAN_Z9]C:\Program Files\Precisely\cd2tiger\US.z9”);
ab.SetProperty (“INIT_LIST”, “GEOSTAN | GEOSTAN_Z9”);
ab.ValidateProperties ();
 ...
ab.GetProperty (“ALL_INPUT_FIELDS”, buffer, buffersize);
printf (“%s”, buffer);
//printf output =
//RecordID\tFirmName\tAddressLine\tAddressLine2\tLastLine\t....

AddressBroker Reference Manual for Windows 363

ALL_OUTPUT_FIELDS (read-only) Property

Delimited list of all valid output field names.

Syntax
ab.GetProperty (“ALL_OUTPUT_FIELDS”, buffer, buffersize)
where buffer returns Value, and Value = FieldName \t FieldName \t …

Type

String list of field names.

Notes

The ALL_OUTPUT_FIELDS read-only property holds a tab- (\t) delimited list of all valid output
field names. The list returned in ALL_OUTPUT_FIELDS is dependent on the values set in
several other properties including INIT_LIST, GEOSTAN_PATHS, GEOSTAN_Z9_PATHS,
GEOSTAN_Z5_PATHS, GEOSTAN_CANADA_PATHS, SPATIAL_PATHS, DEMOGRAPHICS_PATHS, and
INPUT_MODE.

C++ Example
ab.SetProperty (“GEOSTAN_PATHS”,
“[GEOSTAN]C:\Program Files\Precisely\cd2tiger |
[GDT] C:\Program Files\Precisely\cd2gdt”);
ab.SetProperty (“GEOSTAN_Z9_PATHS”,
“[GEOSTAN_Z9]C:\Program Files\Precisely\cd2tiger\US.z9”);
ab.SetProperty (“INIT_LIST”, “GEOSTAN | GEOSTAN_Z9”);
ab.ValidateProperties ();
 ...
ab.GetProperty (“ALL_OUTPUT_FIELDS”, buffer, buffersize);
printf (“%s”, buffer);
//printf output =
//RecordID\tFirmName\tAddressLine\tAddressLine2\tLastLine\t....

BUFFER_RADIUS Property

Spatial buffer (radius or width) to apply to features in an object file.

Syntax
ab.SetProperty ("BUFFER_RADIUS" (unsigned long), "Value");
where Value = number of feet.

Type

Long. Default = 0; range = 0 - 5280000.

AddressBroker Reference Manual for Windows 364

Notes

There are two properties that specify the buffer radius for spatial analysis: BUFFER_RADIUS
and BUFFER_RADIUS_TABLE. AddressBroker uses the value assigned to BUFFER_RADIUS for the
general case.

The ValidateProperties function can only validate the syntax of your entries.

C++ Example
ab.SetProperty ("BUFFER_RADIUS”, (unsigned long) 50);

See Also

“LOGICAL_NAMES (read-only) Property” on page 380.

Chapter 17, "Location Codes".

“Spatial+ output fields” on page 418.

BUFFER_RADIUS_TABLE Property

 Delimited list of Spatial+ buffer radius entries.

Syntax
ab.SetProperty ("BUFFER_RADIUS_TABLE", "Value");
where Value = location code:buffer radius[LOGICAL NAME] | location
code:buffer radius[LOGICAL NAME]...
or where Value = location code:buffer radius[LOGICAL NAME] \t location
code:buffer radius[LOGICAL NAME]...

Type

String list of buffer radius entries.

Notes

The BUFFER_RADIUS_TABLE property holds a delimited list. Each element in the list consists of
three elements. The first element is a location quality code (specified fully or with a wild card
character). The first element is followed by a colon. The second element is a radius buffer
(in feet). The last element, in brackets, is the logical name of a Spatial+ data file. The logical
name must be specified in the SPATIAL_PATHS property.

There are two properties that specify the buffer radius for spatial analysis: BUFFER_RADIUS
and BUFFER_RADIUS_TABLE. AddressBroker uses the value assigned to BUFFER_RADIUS for the
general case.

AddressBroker Reference Manual for Windows 365

BUFFER_RADIUS_TABLE lets you specify the radius to use based on the LocationQualityCode
output field value of an individual record.

You can use BUFFER_RADIUS_TABLE without listing LocationQualityCode in the
OUTPUT_FIELD_LIST property.

For example, a table entry of:
AS0:50[FLOODPLAIN]

specifies that when AddressBroker does a spatial analysis on addresses with the location
code “ASO”, a buffer radius of 50 feet be used with the FLOODPLAIN data.

To minimize the number of BUFFER_RADIUS_TABLE entries, you can use the
star (*) character as a wild card to replace the trailing end of a location code. For example,
a table entry of:

A*:1000[COUNTIES]

indicates that when AddressBroker does a spatial analysis on addresses with a location
code starting with “A” followed by any other value, a buffer radius of 1000 feet be used with
the COUNTIES data.

The match algorithm for BUFFER_RADIUS_TABLE is a linear left-to-right search. That is, the first
entry in the buffer radius table to match the location code is the one used. This is
particularly important to note when using wild-cards.

The most specific table entries should be first (left-most) in the table. The most general
entries should be toward the end (right-most) of the table. For example:

AS0:10[COUNTIES] | A*:1000[COUNTIES]

specifies that when AddressBroker does a spatial analysis on addresses with a “best”
location quality code (“AS0”) a buffer radius of 10 feet be used with the COUNTIES data.
However, the spatial analysis of addresses with more general location quality codes (A*) is
done with a radius buffer of 1000 feet.

If these two BUFFER_RADIUS_TABLE entries were reversed, the “AS0:10[COUNTIES]” would
never be applied, as “A*:1000[COUNTIES]” is the more general match. When making
BUFFER_RADIUS_TABLE entries, it is important to carefully specify location codes and to
carefully order the entries for your particular needs.

If no BUFFER_RADIUS_TABLE entry matches the location code assigned to an address, the
value assigned to BUFFER_RADIUS is used.

The ValidateProperties function can only validate the syntax of your entries.

C++ Example
ab.SetProperty ("BUFFER_RADIUS”, (unsigned long) 50);

AddressBroker Reference Manual for Windows 366

ab.SetProperty ("BUFFER_RADIUS TABLE”,
"AS0:100[COUNTIES] | AS1:200[COUNTIES] | A*:1000[COUNTIES]");

See Also

“LOGICAL_NAMES (read-only) Property” on page 380.

“Spatial+ output fields” on page 418.

Chapter 17, "Location Codes".

AddressBroker Reference Manual for Windows 367

CLOSEST_SITE_FILTER Property

Limits the number of ClosestSite records by a user-specified filter.

Syntax
ab.SetProperty ("CLOSEST_SITE_FILTER", “Criterion");
where Criterion consists of a fieldname, operator, and value
combination.

Type
String.

Notes

The CLOSEST_SITE_FILTER property reduces the number of returned ClosestSite records by
using a filter criteria. The criteria is compared to values in the attribute file (GSA) to
determine if the point is kept. You must specify a logical name with the filter criteria. Field
names must be fully qualified and include the logical name and the field name (for example,
[MUNI] Population).

The filter criteria uses the following format: Fieldname operator value:

• The fieldname must be a valid field from the attribute file.
• String values support the following operators: =, <>, and IN.
• The = operator for string values supports the * wild card operator as long as it

appears as the last character.
• Numeric values support the following operators: =, <>, IN, >, >=, <, and <=.

• The IN operator works as an OR condition. All of the values are compared until an
exact match is found. Numeric values can be decimal numbers. Commas are
supported with all numeric operators except the IN operator.

• Values for string searches must have an apostrophe on each end (for example,
‘string value’). Values for numeric searches do not have this restriction.

Examples of valid criteria include the following:

• “Lastname = ‘Smith’”
• “Population >= 20000”
• “Lastname IN (‘Jones’, ‘Smith’, ‘Johnson’, ‘Williams’)”
• “Lastname = ‘Sm*’”
• “City < > ‘Los Angeles’”

You can specify multiple filters for multiple logical names. If you use the same logical name
more than once and use a different filter, only the first occurrence of that logical name is
honored. For example, "[MUNI] Population > 80000 | [MUNI] Placename=’Boulder’” applies
the Population filter and returns the records that meet the criteria.

AddressBroker Reference Manual for Windows 368

If the criteria is not valid, no values are returned.

C++ Example
ab.SetProperty ("CLOSEST_SITE_FILTER", “[MUNI] Population < 10000 |
[COUNTIES] Population > 5000");

See Also

“Spatial+ output fields” on page 418.

DEMOGRAPHICS_PATHS Property

Delimited list of logical names, paths, and file names of Demographics data.

Syntax
DEMOGRAPHICS_PATHS = [Logical_Name]path/<file>.dld

Type

String pairings of logical names with path and file names.

Notes

The DEMOGRAPHICS_PATHS property holds a delimited list of pairs. The first element of the pair
is a logical name and the second is the full path and file name of a Demographics file.

This property is only required if Demographics Library is included in your Precisely license,
and you are using Demographics data in your application.

Initialization File Example
The DEMOGRAPHICS_PATHS property is defined in the server.ini file only.

DEMOGRAPHICS_PATHS =
[Census2k]"C:\Program Files\Precisely\CENSUS2K.dld"

DPV_DATA_PATH Property

Specifies the file name and path for the DPV data.

Syntax
DPV_DATA_PATH = path/<file>

Type
String of path and file names.

AddressBroker Reference Manual for Windows 369

Notes

This property specifies the location of the DPV data.

This property is only required if you are using the DPV functionality in your application.

C++ Examples
DPV_DATA_PATH = s:data\April05

DPV_SECURITY_KEY Property

Specifies the security key to use the DPV functionality.

Syntax
DPV_SECUIRTY_KEY = <security_key>
where security key is in the format xxxx-xxxx-xxxx-xxxx.

Type

String.

Notes

This property specifies the security key required to access the DPV functionality. You can
obtain a security key from support.precisely.com.

This property is only required if you are using DPV functionality in your application.

C++ Examples
DPV_SECURITY_KEY = A123-4567-BC8D-9123

GDL_SPATIAL_PATHS Property

Delimited list of logical names and directory paths to GDL data.

Syntax
GDL_SPATIAL_PATHS = [Logical_Name]path/<file>.gsb

Type

String pairings of logical names with path and file names.

http://support.precisely.com

AddressBroker Reference Manual for Windows 370

Notes

DEPRECATED

The GDL_SPATIAL_PATHS property holds a delimited list of pairs. The first element in the pair
is a logical name and the second is one or more full path directory names.

GDL can use the SPATIAL_PATHS logical names to eliminate duplicate definitions for both
Spatial and GDL.

Initialization File Example
The GDL_SPATIAL_PATHS property is defined in the server.ini file only.

GDL_SPATIAL_PATHS = \
[STATES2]
"C:\Program Files\Precisely\AddressBroker\Data
\States.gsb");

GEOSTAN_CANADA_PATHS Property

Delimited list of logical names and directory paths to GeoStan Canada data.

Syntax
GEOSTAN_CANADA_PATHS = [Logical_Name]path/

Type

String pairings of logical names with directory paths.

Notes

The GEOSTAN_CANADA_PATHS property holds a delimited list of pairs. The first element in the
pair is a logical name and the second is one or more full path directory names.

This property is only required if GeoStan Canada is included in your Precisely license, and
you are using GeoStan Canada data in your application.

Initialization File Example
The GEOSTAN_CANADA_PATHS property is defined in the server.ini file
only.

GEOSTAN_CANADA_PATHS = \[GEOSTAN_C]
"C:\Program Files\Precisely\AddressBroker\Data");

AddressBroker Reference Manual for Windows 371

GEOSTAN_PATHS Property

Delimited list of logical names and directory paths to GeoStan data.

Syntax
GEOSTAN_PATHS = [Logical_Name]path/

Type

String pairings of logical names with directory paths.

Notes

The GEOSTAN_PATHS property holds a delimited list of pairs. The first element in the pair is a
logical name and the second is a full path directory name.

The GEOSTAN_PATHS property allows multiple GeoStan data paths to be concatenated together
for a single logical name, separated by semicolons.

The GEOSTAN_PATHS property is a list of directory names, not file names.

You must set the GEOSTAN_PATHS property in the server .ini file. You can also set the
GEOSTAN_PATHS property and logical name on the client, but it must be identical to what you
specify in the server .ini file.

Note: Comments are not allowed on the GEOSTAN_PATHS line in the AddressBroker
server .ini file.

Initialization File Example
GEOSTAN_PATHS = \
[GEOSTAN]"C:\Program Files\Precisely\cd2tiger" | \
[GDT]"C:\Program Files\Precisely\cd2gdt”

GEOSTAN_Z9_PATHS Property

Delimited list of logical names and file names to GeoStan ZIP Code data.

Syntax
GEOSTAN_Z9_PATHS = [Logical_Name]path/us.z9

Type

String pairings of logical names with path and file names.

AddressBroker Reference Manual for Windows 372

Notes

The GEOSTAN_Z9_PATHS property holds a delimited list of pairs. The first element of the pair is
a logical name and the second is the full path and file name of a GeoStan ZIP Code data
file.

You must set the GEOSTAN_Z9_PATHS property in the server .ini file. You can also set the
GEOSTAN_Z9_PATHS property and logical name on the client, but it must be identical to what
you specify in the server .ini file.

Initialization File Example
GEOSTAN_Z9_PATHS =
[GEOSTAN_Z9] “C:\Program Files\Precisely\cd2tiger\US.z9” | \
[GDT_Z9] “C:\Program Files\Precisely\cd2gdt\US.z9”

AddressBroker Reference Manual for Windows 373

GS_MEMORY_LIMIT Property

The maximum amount of memory, in megabytes, to allocate for memory-mapping data files.
This property only applies to 64-bit applications. For 32-bit applications, data files are not
memory-mapped and attempts to set this property will be ignored.

When AddressBroker is initialized, it will memory-map as many data files into memory as
GS_MEMORY_LIMIT allows. The default value of 16 GB is sufficient for memory-mapping two
streets and two points datasets. Memory-mapping your data files can provide a 10-15%
performance improvement compared to mapping none of them. However, if your
environment has memory constraints, you can set the GS_MEMORY_LIMIT to the number of
megabytes you can afford.

This initialization property can only be set once per executable process. If you attempt to
set this property again (i.e., on a separate thread), the request is ignored.

Syntax
GS_MEMORY_LIMIT = Value

Where Value can be a number in the range 0-256000 (megabytes).

Type

Long. Default=16000 (megabytes).

AddressBroker Reference Manual for Windows 374

INIT_LIST Property

Delimited list of logical names.

Syntax
ab.SetProperty (“INIT_LIST”, “Value”)
where Value = Logical Name | Logical Name | …
or where Value = Logical Name \t Logical Name \t …

Type

String list of logical names.

Notes

The INIT_LIST property holds a delimited list of logical names referencing the
geo-demographic data files your application uses. Logical names are defined in the
GEOSTAN_PATHS, GEOSTAN_Z9_PATHS, GEOSTAN_Z5_PATHS, GEOSTAN_CANADA_PATHS,
SPATIAL_PATHS, and DEMOGRAPHICS_PATHS properties.

Precisely recommends setting the path properties to contain all available reference file
information. However, when setting INIT_LIST, assign only the logical names of the
geo-demographic data your application accesses. The client cannot create logical names
that do not exist in the server .ini file; therefore, ensure that the logical names you specify
using INIT_LIST are declared in one of the *_PATHS properties in the server .ini file.
Additionally, ensure that the GeoStan and GeoStan ZIP9 data you assign to INIT_LIST are
compatible.

Initialization File Example
; Here we assign all possible reference files to the path properties.
GEOSTAN_PATHS =
[GEOSTAN]"C:\Program Files\Precisely\cd2tiger" | \
[GDT]"C:\Program Files\Precisely\cd2gdt"
GEOSTAN_Z9_PATHS =
[GEOSTAN_Z9]"C:\Program Files\Precisely\cd2tiger\US.z9" \|
[GDT]"C:\Program Files\Precisely\cd2gdt\US.z9"
SPATIAL_PATHS =
[COUNTIES]"C:\Program Files\Precisely\COUNTIES.gsb"
DEMOGRAPHICS_PATHS =
[Census2k]"C:\Program Files\Precisely\CENSUS2K.dld"
; Here we assign only the logical names for data the
; application will access.
; Note that GeoStan and GeoStan ZIP9 data are compatible.
INIT_LIST = GEOSTAN | GEOSTAN_Z9 | COUNTIES

AddressBroker Reference Manual for Windows 375

INPUT_FIELD_LIST Property

Delimited list of field names.

Syntax
ab.SetProperty (“INPUT_FIELD_LIST”, “Value”)
where Value = FieldName | FieldName | …
or where Value = FieldName \t FieldName \t …

Type

String list of field names.

Notes

The INPUT_FIELD_LIST property holds a delimited list of field names to be used by the
application as input. To find out which input field names you can assign to
INPUT_FIELD_LIST, use the GetProperty function call with ALL_INPUT_FIELDS as an
argument.

By specifying only those fields the application uses (as opposed to all of the fields in your
data), AddressBroker manages memory more efficiently, and optimally transfers data
across the network in client/server applications.

C++ Example
ab.SetProperty (“INPUT_FIELD_LIST”,
 “FirmName \t AddressLine | LastLine”);

INPUT_MODE Property

Delimited list of input modes.

Syntax
ab.SetProperty ("INPUT_MODE" (unsigned long), "Value");
where Value = AB_INPUT_NORMAL, AB_INPUT_MULTILINE, or
AB_INPUT_PARSED_LASTLINE.

Type

Long. Default = NORMAL.

AddressBroker Reference Manual for Windows 376

Notes

AddressBroker sets this property to control how the input data is provided from the client
application to the server. It communicates the format of the address information to the
sever. For example:

AB_INPUT_NORMAL (or “INPUT NORMAL”) - The application supplies AddressLine, AddressLine2,
and LastLine.

AB_INPUT_MULTILINE (or “INPUT MULTILINE”) - The application supplies Line1 through Line6.

AB_INPUT_PARSED_LASTLINE (or “INPUT PARSED LASTLINE”) - The application supplies
AddressLine, AddressLine2, City, State, and any ZIP field.

C++ Example
ab.SetProperty ("INPUT_MODE”, (unsigned long) ????????);

See Also

“LOGICAL_NAMES (read-only) Property” on page 380.

Chapter 17, "Location Codes".

IP_FILTER Property

Allows or denies access to individual or groups of IP addresses to the AddressBroker
server. Set by the server administrator, rather than by the client programmer.

Syntax
IP_FILTER = [Allow] <ip values> | [Deny] <ip values>

Type

Two lists of IP values.

Notes

Items in the Allow list are allowed access, while items in the Deny list are not allowed
access. Wild card characters (*) are allowed, and you can use one wildcard character to
include all. You can specify multiple IP addresses in each list, but they must be comma
separated (for example: [Allow} 172.17.*, 127.0.0.1, 65.209.*).

Example
IP_FILTER = [Allow] 172.17.* | [Deny] 65*

AddressBroker Reference Manual for Windows 377

This example allows clients with IP addresses of the form 172.17.* and denies access to IP
addresses of the form 65*.

In the case where an IP is in both the Allow and Deny lists, the most specific address takes
precedence. If the precedence is the same, then the action is to deny the address, as
shown in the following example:

IP_FILTER = [Allow] 172.17.* | [Deny] 172.17.1.114

The above example causes machine 114 to be denied access, since it is a more specific
address than the Allow list items. All other machines in the range of 17.17.* would be
allowed access.

AddressBroker Reference Manual for Windows 378

If you specify either Allow or Deny, then it is inferred that you want to allow only those
machines and deny all others, event though there was no Deny list explicitly specified. The
opposite is true as well. If a user is denied access to the server, a message is written to the
log file. The following example allows only those machines with 172.17.*:

IP_FILTER = [Allow] 172.17.*

LACS_DATA_PATH Property

Specifies the file name and path for the LACSLink data.

Syntax
LACS_DATA_PATH = path/<file>

Type

String of path and file names.

Notes

This property specifies the location of the LACSLink data.

This property is only required if you are using the LACSLink functionality in your application.

C++ Examples
LACS_DATA_PATH = s:data\April05

LACS_SECURITY_KEY Property

Specifies the security key to use the LACSLink functionality.

Syntax
LACS_SECUIRTY_KEY = <security_key>
where security key is in the format xxxx-xxxx-xxxx-xxxx.

Type

String.

Notes

This property specifies the security key required to access the LACSLink functionality. You
can obtain a security key from support.precisely.com.

http://support.precisely.com

AddressBroker Reference Manual for Windows 379

This property is only required if you are using LACSLink functionality in your application.

C++ Examples
LACS_SECURITY_PATH = A123-4567-BC8D-9123

LOG_ROLLOVER (server-only) Property

Sets criteria for the request_log in the server INI file. Set by the server administrator, rather
than by the client programmer.

Syntax
LOG_ROLLOVER = | [STATUS]<xxxMB|yyyD> | REQUEST]<xxxMB|yyyD>

Type

Long. Default = NORMAL.

Notes

The LOG_ROLLOVER property sets age and size criteria for the status and request log files for
the periodic rollover of file names. This property ensures that the log file does not become
too large or too old to be useful.

The log files that are rolled over include the STATUS_LOG and REQUEST_LOG. The Status log file
contains general server events, such as starting or stopping the server. The Request log file
summarizes requests (client interactions with the server). Both log files are set by the server
administrator.

Example
LOG ROLLOVER = [STATUS]10MB | [STATUS]10D |[REQUEST]10MB |
[REQUEST]10D

This example performs a rollover (by closing the log files and opening new log files with a
sequential number at the end) when the log files reach 10 MBytes in size or become 10
days old.

See Also

“REQUEST_LOG Property” on page 386.

“REQUEST_LOG_OPTIONS Property” on page 387.

AddressBroker Reference Manual for Windows 380

LOGICAL_NAMES (read-only) Property

Tab-delimited list of logical names.

Syntax
ab.GetProperty (“LOGICAL NAME”, buffer, buffersize)
where buffer returns Value and
Value = Logical Name:Type \t Logical Name:Type \t …
and Type = G, D, S, Z, Y, C, or L.

Type

String list of logical names.

Notes

The LOGICAL_NAMES read-only property holds a tab- (\t) delimited list of all logical names
defined in the GEOSTAN_PATHS, GEOSTAN_Z9_PATHS, GEOSTAN_Z5_PATHS,
GEOSTAN_CANADA_PATHS, SPATIAL_PATHS, and DEMOGRAPHICS_PATHS properties. Each list item is
composed of two elements separated by a colon. The first element is the logical name. The
last element is an alphabetic code indicating the type of data file associated with the logical
name:

• G—GeoStan
• D—Demographics
• S— Spatial+
• Z—GeoStan ZIP9
• Y—GDL ZIP5
• C—GeoStan Canada

The LOGICAL_NAMES property is particularly useful when the logical names are unknown in
advance, i.e. client applications. This property lets you query the server for a list of logical
names at runtime.

C++ Example
ab.SetProperty (“GEOSTAN_PATHS”,
“[GEOSTAN]C:\Program Files\Precisely\cd2tiger |
[GDT] C:\Program Files\Precisely\cd2gdt”);
ab.SetProperty (“SPATIAL_PATHS”,
“[COUNTIES]C:\Program Files\Precisely\COUNTIES.gsb”);
ab.SetProperty (“GEOSTAN_Z9_PATHS”,
 “[GEOSTAN_Z9]C:\Program Files\Precisely\cd2tiger\US.z9 | [GDT_Z9]
C:\Program Files\Precisely\cd2gdt\US.z9”);
ab.SetProperty (“DEMOGRAPHICS_PATHS”,
[Census2k]"C:\Program Files\Precisely\CENSUS2K.dld"
:
ab.GetProperty (“LOGICAL_NAMES”, buffer, buffersize);
printf (“%s”, buffer);

AddressBroker Reference Manual for Windows 381

//printf output =
//GEOSTAN:G\tGDT:G\tGEOSTAN_Z9:Z\tGDT_Z9:Z\tCOUNTIES:S

MAX_OPEN_GSBS Property

Specifies the maximum number of open gsb files. Set by the server administrator, rather
than by the client programmer.

Syntax
MAX_OPEN_GSBS = Value

Where Value can be a number in the range 1-4096.

Type

Long. Default=0.

Notes

This is the maximum number of GSBs that the AddressBroker server can open
simultaneously. If the number of open GSBs reaches this limit, AddressBroker will close
some of the GSBs that are open, but not currently in use servicing a client request, until the
number of open GSBs falls below this number.

This property is only applicable to Linux systems.

C++ Example

The following code sample would be included in the server .ini file.
MAX_OPEN_GSBS = 2048

AddressBroker Reference Manual for Windows 382

MISC_COUNTS (read-only) Property

Tab-delimited list of miscellaneous counts.

Syntax
ab.GetProperty (“MISC_COUNTS”, buffer, buffersize)
where buffer returns Value and
Value = Counter Label:Count \t Counter Label:Count \t …
and where Count = Integer value

Type

String list of counters.

Notes

The MISC_COUNTS read-only property contains a tab- (\t) delimited list of miscellaneous
counters and their values. Each item in the list consists of three elements. The first element
is the counter label. It is followed by a colon (:). The last element is a numeric count. The
MISC_COUNTS property is a list of counts for all counter labels. The table below provides a
complete listing of counter labels.

KEEP_COUNTS must be set to TRUE and KEEP_MULTIMATCH must be set to FALSE for counts to
be meaningful. Counts are not meaningful in a multiple match situation.

Counts are kept when ProcessRecords is called.

Successful match codes Location codes Error match codes

standardized and matched records address-level geocodes address not found

intersection matched records ZIP + 4 centroid level geocodes low-level error

non-USPS matched records block group accuracy geocodes GSD file not found error

address lines corrected census tract accuracy geocodes incorrect GSD file signature or
version ID error

street types corrected county-level accuracy geocodes GSD file out of date error

pre-directionals corrected geocodes based on 5-digit ZIP
centroid

city + state or ZIP not found error

post-directionals corrected geocodes based on ZIP+2
centroid

input ZIP not found in directory
error

street names corrected geocodes based on ZIP + 4
centroid

input city not found in directory
error

AddressBroker Reference Manual for Windows 383

C++ Example
ab.GetProperty (“MISC_COUNTS”, buffer, buffersize);
printf (“%s”, buffer);
//printf output =
//standardized and matched records:10\tintersection matched
records:2\t…

Counts are returned in top-down left-to-right order, as listed in the table above.

last lines corrected input city not unique in directory
error

number of ZIP Codes corrected out of license area error

cities corrected license expired error

states corrected matching street not found in
directory error

Number of ZIP + 4 Codes corrected matching cross street not found
for intersection match error

matching ranges not found error

unresolved match error

too many possible cross streets
for intersection match error

address not found in multiline
match error

Successful match codes Location codes Error match codes

AddressBroker Reference Manual for Windows 384

OUTPUT_FIELD_LIST Property

Delimited list of fields names to be retrieved as output.

Syntax
ab.SetProperty (“OUTPUT_FIELD_LIST”, “Value”)
where, for fields that reference to GeoStan data,
Value = FieldName | FieldName | …
or Value = FieldName \t FieldName \t …for fields
and where, for fields that reference to Spatial+, GDL, or Demographics
Library data,
Value = FieldName [Logical Name] | FieldName [Logical Name] | …
or Value = FieldName [Logical Name] \t FieldName [Logical Name] \t....

Type

String list of field names.

Notes

The OUTPUT_FIELD_LIST property holds a delimited list of field names to be retrieved by the
application. To find out which output field names you can assign to OUTPUT_FIELD_LIST, use
the GetProperty function call with ALL_OUTPUT_FIELDS property as an argument.

When assigning the list of output fields, you must append a logical name, in square
brackets ([]), to each field name that requires reference to Spatial+ or Demographics
Library data. The logical name establishes the geo-demographic data your application uses
to generate these output field values. See “Decimals in input/output field values” on
page 67 for more information on this topic.

A field name-logical name pair may not exceed 32 bytes.

By specifying the subset of output fields you want retrieved (as opposed to all of the
possible output fields AddressBroker could generate, given your input), AddressBroker
manages memory more efficiently, and optimally transfers data across the network in
client/server applications.

C++ Example
ab.SetProperty (
“OUTPUT_FIELD_LIST”,“AddressLine|LASTLINE|PolygonName[COUN
TIES] | PolygonName[States] | POP00[Census2k]”);

AddressBroker Reference Manual for Windows 385

RDI_DATAPATH Property

Specifies the file name and path for the Residential Delivery Indicator (RDI™) data.

Syntax
RDI_DATAPATH = path/<file>

Type
String of path and file names.

Notes

This property specifies the location of the RDI data.

This property is only required if you are using the RDI functionality in your application.

C++ Examples
RDI_DATAPATH = s:data\April05

AddressBroker Reference Manual for Windows 386

REQUEST_LOG Property

Specifies a log file that contains a final summary of each request (client interaction with the
server). Set by the server administrator, rather than by the client programmer.

Syntax
REQUEST_ LOG = "DriveLetter:\path\filename"
The log name must specify a file where the information will
be written.

Type

String of path and name of request log file.

Notes

This property specifies a log file that contains a final summary of each request (client
interaction with the server). For each request, the following information is supplied:

• Request type.
• Request ID.
• Creation time.
• Client IP.
• Logical names used by the client.
• Username.
• Server handle number that processed the request.
• Number of records processed.
• Elapsed seconds on request queue, elapsed seconds being processed.
• Total seconds in the server.

Following is a typical entry in the request log:
Request type: Process Records. Request# 31. Create time: Tue Mar 23
09:51:48 2004. Client IP: 175.18.2.76.
Logical Names: GEOSTAN|GEOSTAN_Z9. User Name: .
Handle# 0. Num Records: 100. Elapsed seconds on queue: 0. Elapsed
seconds in processing: 1.
Total seconds in server: 1.

C++ Example
REQUEST_ LOG = "C:\work\request.log"

See Also

“REQUEST_LOG_OPTIONS Property” on page 387.

AddressBroker Reference Manual for Windows 387

“LOG_ROLLOVER (server-only) Property” on page 379.

REQUEST_LOG_OPTIONS Property

Specifies the format of the request log and the delimiter that separates fields.

Syntax
REQUEST_ LOG_OPTIONS = <OUTPUT_FORMAT>|<DELIMITER>

Where OUTPUT_FORMAT defines the format of the request log output, either BRIEF or VERBOSE.

Where DELIMITER defines the delimiter that separates fields when using BRIEF format. Valid
delimiters are as follows: SEMICOLON, PIPE, COMMA, or TAB. When the setting is VERBOSE, the
delimiter is ignored.

Type

String of output format and delimiter type.

Notes

This property specifies the format of the request log and the delimiter that separates the
fields.

When set to BRIEF, the request log file begins with a column header row with the names of
the eleven columns. Each request is summarized in those 11 columns on its own row.

The default values are VERBOSE and PIPE.

C++ Examples
REQUEST_LOG_OPTIONS = BRIEF|PIPE
REQEUST_LOG_OPTIONS = VERBOSE
REQUEST_LOG_OPTIONS = BRIEF

See Also

“REQUEST_LOG Property” on page 386.

“LOG_ROLLOVER (server-only) Property” on page 379.

AddressBroker Reference Manual for Windows 388

SPATIAL_PATHS Property

Delimited list of logical names, paths, and file names of Spatial+ data.

Syntax
SPATIAL_PATHS = [Logical_Name]path/<file>gsb

Type

String pairings of logical names with full path and file names.

Notes

The SPATIAL_PATHS property holds a delimited list of pairs.

The first element of the pair is a logical name and the second is the full path and file name
of a Spatial+ (.gsb) file.

You can use SPATIAL_PATHS to specify the logicals for the GDL fields you want returned (for
example, GDLPolygonName or PolygonOverlap).

GDL can use the SPATIAL_PATHS logical names to eliminate duplicate definitions for both
Spatial and GDL.

This property is only required if Spatial+ is included in your Precisely license, and you are
using spatial data in your application.

You can have more than one SPATIAL_PATHS properties in the abserver.ini file, with each
property defining one or more logicals. If you have a large number of data sources, Group 1
recommends that you use more than one SPATIAL_PATHS property to avoid errors.

Initialization File Example

The CANADA_PATHS property is defined in the server.ini file only.
SPATIAL_PATHS =
[COUNTIES] "C:\Program Files\Precisely\COUNTIES.gsb” | \
[States]"C:\Program Files\Precisely\STATES.gsb”

AddressBroker Reference Manual for Windows 389

STATUS_LOG Property

Describes general server events. Set by the server administrator, rather than by the client
programmer.

Syntax
STATUS_LOG = "DriveLetter:\path\filename"

The file name specifies where the information is written.

Set AddressBroker’s STATUS_LOG property to either of the following:

• The path and file name for a status log to save status messages.
• The value CONSOLE to display status messages to a console window.

Type

String of path and name of status log file.

Notes

The STATUS_LOG property specifies a log file that contains information about general server
events, such as when the server was started and stopped. The property is set by the server
administrator. When the status log reaches 2GB in size, AddressBroker starts writing over
the status log from the beginning of the log.

C++ Example
STATUS_LOG = "C:\work\server.log"
STATUS_LEVEL = SERVER

Set AddressBroker’s STATUS_LEVEL property to the appropriate level of message reporting
you require:

• NONE—No messages. The least verbose.
• FATAL—Fatal errors, errors, and warnings.
• ERROR—Errors and warnings only.
• WARN—Warnings only.
• INFO—All information messages.
• DEBUG—Debug messages; for development only.
• SERVER—Server-level only messages. Default.

See Also

“REQUEST_LOG Property” on page 386.

AddressBroker Reference Manual for Windows 390

“LOG_ROLLOVER (server-only) Property” on page 379.

15 – Fields

In this chapter

Tables of input fields 392
GeoStan input fields 393
GeoStan Canada input fields 396
Spatial+ input fields 397
GDL input fields 398
Demographics input fields 399

Tables of output fields 399
GeoStan output fields 400
GeoStan Canada output fields 416
Spatial+ output fields 418
Geographic Determination Library (GDL) output fields 419
Demographic (Census 2010) output fields 420

AddressBroker Reference Manual for Windows 392

This chapter is a complete listing of AddressBroker fields. The chapter is divided into two
sections, input fields and output fields. Within each section, fields are listed by type—
GeoStan, GeoStan Canada, Spatial+, or Demographics Library.

The information in this chapter is primarily given in tables. The tables include the following
information about each field: its character string name, data type, size, and a brief
description.

Tables of input fields
The input fields available to your application depend on the values assigned to several
AddressBroker properties. The list of available fields can be retrieved by using a
GetProperty call with ALL_INPUT_FIELDS property as its argument. The value you assign to
AB_INPUT_MODE property restricts the fields you can use for address input.

AddressBroker Reference Manual for Windows 393

GeoStan input fields

Input String
Field Name

Data Type
N—
numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number
of
decimals
if
numeric Description INPUT_MODE

AddressLine C 256 0 1st address line.
For single line
addresses, must
include lastline
information and
can also include
address
information.

AB_INPUT_NORMAL
AB_INPUT_PARSED_LASTLIN
E

AddressLine2 C 61 0 2nd address line. AB_INPUT_NORMAL
AB_INPUT_PARSED_LASTLIN
E

ApnId C 46 0 Assessor’s
Parcel Number.

NOTE: Revers
e APN
matching is
only available
with Centrus
Points and
Centrus APN
data. This
feature is not
supported
using MLD and
MLD Extended
Attributes data.

AB_INPUT_NORMAL

CountyName C Input county
name used for
geographic
fallback.

AB_INPUT_NORMAL
AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

City C 29 0 City name. AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

CountyFips C 4 0 County FIPS. AB_INPUT_NORMAL

FirmName C 41 0 Company name. AB_INPUT_NORMAL
AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

LastLine C 61 0 Complete last
address line.

AB_INPUT_NORMAL

Latitude C 11 0 Latitude of
located point (in
millionths of
degrees).

AB_INPUT_NORMAL

AddressBroker Reference Manual for Windows 394

Longitude C 12 0 Longitude of
located point (in
millionths of
degrees).

AB_INPUT_NORMAL

Line1 C 104 0 Address line 1. AB_INPUT_MULTILINE

Line2 C 104 0 Address line 2 AB_INPUT_MULTILINE

Line3 C 104 0 Address line 3. AB_INPUT_MULTILINE

Line4 C 104 0 Address line 4. AB_INPUT_MULTILINE

Line5 C 104 0 Address line 5. AB_INPUT_MULTILINE

Line6 C 104 0 Address line 6. AB_INPUT_MULTILINE

PBKEY C 16 0 PreciselyID

unique identifier
used as input for
matching with
Reverse
PreciselyID
Lookup. For more
information, see
“Reverse
PreciselyID
Lookup” on
page 21.

NOTE: This
field is only
available for the
Master
Location
Dataset.

AB_INPUT_NORMAL
AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

RecordID C 32 0 User-provided
unique record
identifier.

Any value

State C 3 0 State
abbreviation.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

StateFips C 3 0 State FIPS. AB_INPUT_NORMAL

Urbanization
Name

C 31 0 Urbanization
name for Puerto
Rico.

AB_INPUT_NORMAL
AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

Input String
Field Name

Data Type
N—
numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number
of
decimals
if
numeric Description INPUT_MODE

AddressBroker Reference Manual for Windows 395

ZIP C 10 0 5-digit ZIP Code.
If you have input
files containing
addresses with
both 5-digit ZIP
Codes and 9-digit
ZIP Codes, use
the” ZIP“ Input
field to allow both
formats.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

ZIP4 C 5 0 4-digit ZIP Code
extension (same
field as for
Demographics
data).

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

ZIP9 C 10 0 9-digit ZIP (ZIP +
4).

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

ZIP10 C 11 0 9-digit ZIP (ZIP +
4) with hyphen.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLIN
E

Input String
Field Name

Data Type
N—
numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number
of
decimals
if
numeric Description INPUT_MODE

AddressBroker Reference Manual for Windows 396

GeoStan Canada input fields

Input String
Field Name

Data Type
N—
numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number
of
decimal
s if
numeric Description INPUT_MODE

AddressLin
e

C 61 0 Address line. AB_INPUT_NORMAL
AB_INPUT_PARSED_LASTLINE

City C 29 0 City name. AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLINE

Country C 29 0 Country name. AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLINE

LastLine C 61 0 Complete last
address line.

AB_INPUT_NORMAL

Municipali
ty

C 29 0 Canadian
Municipality.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLINE

PostalCode C 10 0 Canadian
Postal Code.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLINE

Province C 31 0 Canadian
Province.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLINE

State C 3 0 State
abbreviation.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLINE

ZIP C 10 0 7-digit
Canadian
Postal Code.

AB_INPUT_PARSED
AB_INPUT_PARSED_LASTLINE

AddressBroker Reference Manual for Windows 397

Spatial+ input fields

Input String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals if
numeric Description

Latitude N 11 6 Latitude of located point (in millionths of degrees)
overrides geocoded value used in Spatial searches.
See “Decimals in input/output field
values” on page 67.

Longitude N 12 6 Longitude of located point (in millionths of degrees)
overrides geocoded value used in Spatial searches.
See “Decimals in input/output field
values” on page 67.

AddressBroker Reference Manual for Windows 398

GDL input fields

Input String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals if
numeric Description

AddressLine C 61 0 1st address line.

AddressLine2 C 61 0 2nd address line.

City C 29 0 City name.

Country C 29 0 Country name.

FirmName C 41 0 Company name.

LastLine C 61 0 Complete last address line.

Line1 C 104 0 Address line 1.

Line2 C 104 0 Address line 2

Line3 C 104 0 Address line 3.

Line4 C 104 0 Address line 4.

Line5 C 104 0 Address line 5.

Line6 C 104 0 Address line 6.

RecordID C 32 0 User-provided unique record identifier.

State C 3 0 State abbreviation.

UrbanizationName C 31 0 Urbanization name for Puerto Rico.

ZIP C 10 0 5-digit ZIP Code.

ZIP4 C 5 0 4-digit ZIP Code extension (same field
as for Demographics data).

ZIP9 C 10 0 9-digit ZIP (ZIP + 4).

ZIP10 C 11 0 9-digit ZIP (ZIP + 4) with hyphen.

AddressBroker Reference Manual for Windows 399

Demographics input fields

Tables of output fields
The output fields available to your application depend on the values assigned to several
AddressBroker properties. The list of available fields can be retrieved by using a
GetProperty call with ALL_OUTPUT_FIELDS property as its argument.

Spatial+, Demographics, and GDL output fields require a logical name when assigned to
the OUTPUT_FIELD_LIST property or when used as arguments to GetField or ResetField.
See “Decimals in input/output field values” on page 67, “OUTPUT_FIELD_LIST Property”
on page 384, and the GetField and ResetField function references in each API for more
information. GeoStan and GeoStan Canada output fields do not require a logical name.

Input String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals if
numeric Description

CensusBlockID C 16 0 15-digit census block ID, 12-digit block
group, or an 11-digit census tract. Overrides
geocoded value used in Demographics
searches.

ZIP9 C 10 0 9-digit ZIP (ZIP + 4) (same field as for
GeoStan data) overrides geocoded value
used in Demographics searches.

AddressBroker Reference Manual for Windows 400

GeoStan output fields

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressLine C 256 0 1st address line.

AddressLine2 C 61 0 2nd address line.

AddressType C 2 0 Address Type regarding number of units:
S – Single unit
M – Multiple units
P – Post Office box
X – Unknown

NOTE: This field is only available with
the MLD Extended Attributes Dataset

Alternate C 2 0 Base/Alternate record flag; B = base; A =
alternate.

ApnID C 46 0 Assessor’s parcel number

AuxUserData C 301 0 User data from the auxiliary file. Blank if
no auxiliary file.

BlockSuffix C 2 0 Single character block suffix for split
Tiger data blocks.

CarrierRoute C 5 0 Carrier route.

CenterlineLatit
ude

C 11 0 Latitude of located point (in millionths of
degrees) for a centerline match.

CenterlineLongi
tude

C 12 0 Longitude of located point (in millionths
of degrees) for a centerline match.

CenterlineNeare
stDistance

C 8 0 Used differently with reverse geocoding
and centerline matching:
• Reverse geocoding – Distance, in

feet, from the input location to the
matched street segment, point
address, or intersection.

• Centerline – Distance, in feet, from the
point-level match to the centerline
match.

CenterlineBeari
ng

C 6 0 Compass direction, in decimal degrees,
from the point data match to the
centerline match. Measured clockwise
from 0 degrees north.

AddressBroker Reference Manual for Windows 401

CenterlineSegme
ntID

C 11 0 Unique 10-digit Segment ID for a
centerline match assigned by the Street
Network Provider: Tiger, HERE, or
TomTom.

CenterlinePreDi
r

C 3 0 Prefix direction for a centerline match.

CenterlineStree
tName

C 41 0 Street name for a centerline match.

CenterlineStree
tType

C 5 0 Street type or suffix for a centerline
match.

CenterlinePostD
ir

C 3 0 Postfix direction for a centerline match.

CenterlineDataT
ype

C 3 0 The type of data used to make the
centerline match.
• 0 – USPS data
• 1 – TIGER data
• 2 – TomTom data
• 3 – Sanborn point-level data
• 4 – Deprecated
• 6 – HERE data
• 7 – TomTom point-level data
• 8 - Centrus point-level data
• 9 - Auxiliary file
• 10 - User Dictionary
• 11- HERE Point
• 12 - Master Location Data

CenterlineSegme
ntDir

C 2 0 Unique 10-digit Segment ID for the
centerline match assigned by the Street
Network Provider: Tiger, HERE, or
TomTom.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 402

CenterlineIsAli
as

C 4 0 Centerline match located by an index
alias. Returns 3 characters. The first is
an N for normal street match or A for alias
match (including buildings, aliases, firms,
etc.). The next 2 characters are:
• 01 – Basic index (normal address

match)
• 02 – USPS street name alias index
• 03 – USPS building index
• 04 – USPS firm name index
• 05 – Statewide intersection alias

match (when using the Usw.gsi or
Use.gsi file)

• 06 – Spatial data street name alias
(requires the Us_pw.gsi, Us_pe.gsi,
Us_psw.gsi, or Us_pse.gsi file)

• 07 – Alternate index (when using
Zip9.gsu, Zip9e.gsu, and Zip9w.gsu)

• 08 – LACSLink

• 09 - Auxiliary file
• 10 - Centrus Alias Data Set index

(usca.gsi)
• 11 - POI index file (poi.gsi)
• 12 - USPS Preferred Alias
• 13 - ZIPMove match (when using

us.gsz)
• 14 - Expanded Centroids match

(when using us_cent.gsc and/or
bldgcent.gsc)

CenterlineBlock
Left

C 16 0 Provides the Census FIPS Code that
indicates the address is on the left side of
the street for a centerline match.

CenterlineBlock
Right

C 16 0 Provides the Census FIPS Code that
indicates the address is on the right side
of the street for a centerline match.

CenterlineLeftB
lockSuffix

C 2 0 Current left Block suffix for Census 2010
Geography for a centerline match.
Returns A or B. Only available in Centrus
Enhanced data.

CenterlineRight
BlockSuffix

C 2 0 Current right Block suffix for Census
2010 Geography for a centerline match.
Returns A or B. Only available in Centrus
Enhanced data.

CBSADivisionNam
e

C 73 0 CBSA division name.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 403

CBSADivisionNum
ber

C 6 0 CBSA division number.

CBSAname C 76 0 CBSA name.

CBSAnumber C 6 0 CBSA name.

CSAname C 4 0 CSA name.

CSAnumber C 2 0 CSA name.

CensusBlockID C 16 0 15-digit census block ID.

CheckDigit C 2 0 Check digit.

City C 29 0 City name.

CityStateRecord
Name

C 29 0 City Name for the matched address from
the City State record.

CMSAName C 31 0 CMSA name.

CMSANumber C 5 0 CMSA number.

ConfidenceSurfa
ceType

C 16 0 Generates a confidence surface type
based on information from a GeoStan
match.

Country C 29 0 Country name.

CountyName C 128 0 County name.

CrossStreetPost
fixDirection

C 3 0 Cross street postfix direction.

CrossStreetPref
ixDirection

C 3 0 Cross street prefix direction.

CrossStreetType C 5 0 Cross street type.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 404

DataType C 3 0 The type of data used to make the match.
The type of data used to make the
centerline match.
• 0 – USPS data
• 1 – TIGER data
• 2 – TomTom data
• 3 – Sanborn point-level data
• 4 – Deprecated
• 6 – HERE data
• 7 – TomTom point-level data
• 8 - Centrus point-level data
• 9 - Auxiliary file
• 10 - User Dictionary
• 11- HERE Point
• 12- Master Location Data

DefaultFlag C 2 0 Y = Either HiRiseDefault or
RuralRouteDefault returned Y.
Blank = Both HiRiseDefault and
RuralRouteDefault returned N or Blank.

DeliveryPointBa
rcode

C 3 0 Delivery point barcode.

DPVConfirm C 2 0 DPV confirmation indicator.
N = Nothing confirmed.
Y = Confirmed ZIP + 4, primary, and
secondary.
S = Confirmed ZIP + 4 and primary.
D = Confirmed ZIP + 4 and primary and a
default match (GS_HI_RISE_DFLT = Y).
Blank = Non-matched input address to
USPS ZIP + 4 data, or DPV data not
loaded.

DPVCMRA C 2 0 DPV CMRA indicator.
Y = address found in CMRA table.
N = Address not found in CMRA table.
Blank = DPV not loaded

DPVFalsePositiv
e

C 2 0 DPV false-positive indicator. Returns Y if
a false-positive address match occurs.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 405

DPVFootnote1 C 3 0 Provides information about matched
DPV records.
AA = ZIP + 4 matched record
A1 = for failure to match a ZIP + 4 record
Blank for address not presented to hash
table or DPV data not loaded.

DPVFootnote2 C 3 0 Provides information about matched
DPV records.
BB = record where all DPV categories
matched
CC = DPV matched primary/house
number, where the secondary unit
number did not match (present but
invalid)
M1 = Missing primary/house number
M3 = Invalid primary/house number
N1 = DPV matched primary/house
number, with a missing highrise
secondary number
P1 = Missing PS, RR, or HC Box number
P3 = Invalid PS, RR or HC Box number
F1 = All military addresses
G1 = All general delivery addresses
U1 = All unique ZIP Code addresses
Blank = Address not presented to hash
table or DPV data not loaded

DPVFootnote3 C 3 0 Provides information about matched
DPV records.
R1 = Matched to CMRA, without a
Private mail box (PMB)
RR = Matched to CMRA and PMB
present.
Blank = Address not presented to hash
table or DPV data not loaded

DPVFootnote4 C 3 0 Reserved.

DPVFootnote5 C 3 0 Reserved by USPS for future use.

DPVFootnote6 C 3 0 Reserved by USPS for future use.

DPVVacancyStatu
s

C 3 DPV vacancy status.
• Y – the address is vacant.
• N – the address is not vacant.
• Blank – DPV is not loaded or DPV did

not confirm.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 406

DPVNoStat C 3 Indicates that the address is not
receiving delivery and the address is not
counted as a possible delivery. These
addresses are not receiving delivery
because a) delivery has not been
established; b) customer receives mail
as part of a drop; or c) the address is no
longer a possible delivery because the
carrier destroys or returns all of the mail.
Values:
• Y - address was valid for

computerized delivery sequence
(CDS) pre-processing.

• N - address not valid for CDS.
• Blank - address not presented to No

Stat table or DPV data not loaded.

EWSMatch C 2 0 Y = Address record match denied
because input record matched to EWS
data.
Blank = Input record did not match to
EWS data.

FIPSCountyCode C 6 0 FIPS code for county.

FirmName C 41 0 Firm name.

GeographicRank C Geographic rank.

GovernmentBuild
ingIndicator

C 2 0 Government building indicator.

HighEndHouseNum
ber

C 12 0 House number at high end of range.

HighUnitNumber C 12 0 High unit number.

HiRiseDefault C 2 0 N = Matched to an exact high-rise record
or a street record.
Y= An exact record was not found.
Matched to the USPS default high-rise
record or a street record. Check the input
address for accuracy and completeness.
Blank = The flag does not apply to the
input address (for example, PO Boxes
and General Delivery addresses) or no
match was found.

HouseNumber C 12 0 House number of input address.

HouseNumberHigh
Suffix

C 7 0 House number high suffix of input
address.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 407

HouseNumberSuff
ix

C 7 0 House number suffix of input address.

IncorpPlaceInd C 2 0 Incorporated Place Indicator.
I – Incorporated place
N – Not an incorporated place
X – Unknown

NOTE: This field is only available with
the MLD Extended Attributes Dataset

Intersection C 2 0 Cross street match found indicated by
flag (T,F).

IsAlias C 4 0 Match record located by an index alias.
Returns 3 characters. The first is an N for
normal street match or A for alias match
(including buildings, aliases, firms, etc.).
The next 2 characters are:
• 01 – Basic index (normal address

match)
• 02 – USPS street name alias index
• 03 – USPS building index
• 04 – USPS firm name index
• 05 – Statewide intersection alias

match (when using the Usw.gsi or
Use.gsi file)

• 06 – Spatial data street name alias
(requires the Us_pw.gsi, Us_pe.gsi,
Us_psw.gsi, or Us_pse.gsi file)

• 07 – Alternate index (when using
Zip9.gsu, Zip9e.gsu, and Zip9w.gsu)

• 08 – LACSLink

• 09 - Auxiliary file
• 10 - Centrus Alias Data Set index

(usca.gsi)
• 11 - POI index file (poi.gsi)
• 12 - USPS Preferred Alias
• 13 - ZIPMove match (when using

us.gsz)
• 14 - Expanded Centroids match

(when using us_cent.gsc and/or
bldgcent.gsc)

LACSAddress C 2 0 L = LACS (Locatable Address Correction
System) address

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 408

LACSLinkInd C 2 0 Provides information about matched
LACSLink records.
Y = Matched LACSLink record
N = LACSLink match was NOT found
F = False-positive LACSLink record
S = Records where the secondary
information (unit number) was removed
to make a LACSLink match
Blank = Records not processed through
LACSLink

LACSLinkRetCode C 3 0 A = Matched LACSLink record
00 = LACSLink match was NOT found
14 = Found LACSLink match, but no
LACSLink conversion
92 = The secondary information (unit
number) was removed to make a
LACSLink match
Blank = not processed through LACSLink

LastLine C 61 0 Complete last address line.

Latitude N 11 6 Latitude of located point (in millionths of
degrees).
See “Decimals in input/output
field values” on page 67.

LeftBlockSuffix C 2 0 Left side of block suffix.
Blank if the matched record is from point-
level data.

Line1 C 104 0 Address line 1. Available only when
INPUT_MODE =
AB_INPUT_MULTILINE.

Line2 C 104 0 Address line 2. Available only when
INPUT_MODE =
AB_INPUT_MULTILINE.

Line3 C 104 0 Address line 3. Available only when
INPUT_MODE =
AB_INPUT_MULTILINE.

Line4 C 104 0 Address line 4. Available only when
INPUT_MODE =
AB_INPUT_MULTILINE.

Line5 C 104 0 Address line 5. Available only when
INPUT_MODE =
AB_INPUT_MULTILINE.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 409

Line6 C 104 0 Address line 6. Available only when
INPUT_MODE =
AB_INPUT_MULTILINE.

LocationQuality
Code

C 5 0 Code indicating the quality of location.
See “GeoStan location codes”
on page 433.

Longitude N 12 6 Longitude of located point (in millionths
of degrees).
See “Decimals in input/output
field values” on page 67.

LOTCode C 2 0 Requires standardizable input address,
A = ascending,
D = descending.

LOTNumber C 5 0 4-digit LOT number, requires
standardizable input address

LotSize N 11 0 Lot size of the parcel expressed in
square feet; 0 if none.

NOTE: This field is only available with
the MLD Extended Attributes Dataset

LotSizeMeters N 11 0 Lot size of the parcel expressed in
square meters; 0 if none.

NOTE: This field is only available with
the MLD Extended Attributes Dataset

LowEndHouseNumb
er

C 12 0 House number at low end of range.

LowUnitNumber C 12 0 Low unit number.

MatchCode C 5 0 Match code. See“GeoStan return
codes” on page 423.

MatchedDB C Returns the index of the GSD or User
Dictionary matched to from GeoStan.

MailStop C 61 0 Mail Stop.

MCDName C 41 0 Minor Civil Division name from the
auxiliary file. Blank if no auxiliary file.

MCDNumber C 6 0 Minor Civil Division number from the
auxiliary file. Blank if no auxiliary file

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 410

MECLat N 13 0 Latitude of Minimum Enclosing Circle
expressed with an implied 6 digits of
decimal precision; 0 if none.
For example: 34809676 means
34.809676

NOTE: This field is only available with
the MLD Extended Attributes Dataset.

MECLon N 13 0 Longitude of Minimum Enclosing Circle
expressed with an implied 6 digits of
decimal precision; 0 if none.
For example: -92447089 means -
92.447089

NOTE: This field is only available with
the MLD Extended Attributes Dataset.

MECRadius N 12 1 Radius of Minimum Enclosing Circle (in
square feet) expressed as a whole
number. For example: 1234 means
1,234 feet.

NOTE: This field is only available with
the MLD Extended Attributes Dataset.

MECRadiusMeters N 12 1 Radius of Minimum Enclosing Circle (in
meters) expressed with 1 digit of decimal
precision.
For example: 123.4 meters

NOTE: This field is only available with
the MLD Extended Attributes Dataset.

MetroFlag C 2 0 Metropolitan or micropolitan flag.

MSA C 66 0 MSA or PMSA name.

MSANumber C 5 0 MSA or PMSA number.

ParcelCentroidE
levation

N 7 1 Elevation above sea level (in feet). For
example: 125 feet.

ParCenElevation
Meters

N 7 1 Elevation above sea level (in meters)
expressed with 1 digit of decimal
precision. For example: 12.5 meters.

NOTE: This field is only available with
the MLD Extended Attributes Dataset.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 411

PBKEY C 16 0 PreciselyID unique identifier. This is a
unique address identifier returned when
an address match is returned from the
Master Location Dataset. The leading
character is a ‘P’. For example:
P00001XSF1IF
For a fallback pbKey, the leading
character is an ‘X’. For example,
X00001XSF1IF. For more information,
see “PreciselyID Fallback” on
page 20.

NOTE: This field is only available for
the Master Location Dataset.

PMBDesignator C 5 0 Private mail box (PMB) designator. Field
is not output if using multiline input mode.

PMBNumber C 9 0 Private mail box (PMB) number. Field is
not output if using multiline input mode.

PointID C 11 0 Unique point ID of the matched record
when matched to point-level data. Blank
if the matched record is not from point-
level data.

PostfixDirectio
n

C 3 0 Postfix direction.

PreferredCityNa
me

C 29 0 Preferred city name for the output ZIP
Code of the matched address.

PrefixDirection C 3 0 Prefix direction.

RDIRetCode C 2 0 USPS Residential Delivery Indicator
(RDI) return code description:
• Y = Residence
• N = Business
• Blank = Not processed through RDI. t

RecordID C 32 0 User-provided unique record identifier.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 412

RecordType C 2 0 USPS range record type:
• A = Auxiliary file
• G = General Delivery
• H = High Rise
• F = Firm
• S = Street
• P = PO Box
• R = Rural route/highway contract
• T = Tiger file
• U = User Dictionary

ResidentialBusi
ness

C 2 0 Usage Indicator:
R – Residential use
B – Business use
M – Mixed use – residential and business
X – Unknown use

NOTE: This field is only available with
the MLD Extended Attributes Dataset

Right Block
Suffix

C 2 0 Right side of block suffix.
Blank if the matched record is from point-
level data.

RoadClassCode C 3 0 Road class code:
• 1 = major road, main data file.
• 11 = major road, supplemental data

file.
• 0 = minor road, main data file.
• 10 = minor road; supplemental file.

RuralRouteDefau
lt

C 2 0 N = Matched to an exact rural route
record.
Y = An exact record was not found.
Matched to the USPS default rural route
record. Check the input address for
accuracy and completeness.
Blank = The flag does not apply to the
input address (for example, PO Boxes
and General Delivery addresses) or no
match was found.

SegmentBlockLef
t

C 16 0 Block on left side of segment.

SegmentBlockRig
ht

C 16 0 Block on right side of segment.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 413

Segment ID C 11 0 Unique 10-digit Segment ID assigned by
the Street Network Provider: Tiger,
HERE, or TomTom.

Short Address
Line

C 61 Shortest possible address determined by
CASS rules.

Short Street
Name

C 41 Shortest possible street name
determined by CASS rules.

Short Cross
Street Name

C 41 Shortest possible cross street name
determined by CASS rules.

Short Cross
Street Postfix
Direction

C 3 Shortest possible cross street postfix
direction determined by CASS rules.

Short Prefix
Direction

C 3 Shortest possible prefix direction
determined by CASS rules.

Short Cross
Street Prefix
Direction

C 3 Shortest possible cross street prefix
direction determined by CASS rules.

Short Street
Type

C 5 Shortest possible street type determined
by CASS rules.

Short Cross
Street Type

C 5 Shortest possible cross street type
determined by CASS rules.

Short Postfix
Direction

C 3 Shortest possible postfix direction
determined by CASS rules.

Short City C 29 Shortest possible city name determined
by CASS rules.

Short Last Line C 61 Shortest possible last line determined by
CASS rules.

State C 31 0 State name.

StreetName C 41 0 Street name.

StreetSide C 2 0 The matched address is on the following
side of the street:
• L – Left side of the street
• R – Right side of the street
• B – Both sides of the street
• U – Unknown side of the street
This is relative to the segment endpoints
and the segment direction.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 414

StreetType C 5 0 Street type or suffix.

SuiteLink
RetCode

C 4 0 SuiteLink Return Code.
• A - SuiteLink record match.
• 00 - No SuiteLink match.
• Blank - This address was not

processed through SuiteLink.

TigerFaceID C 10 0 TIGER Face Identifier. This field can be
used to match to all Census geocodes
using external data; 0 if none.

NOTE: This field is only available with
the MLD Extended Attributes Dataset

TigerPlace C 8 0 TIGER Place code; 0 if none.

NOTE: This field is only available with
the MLD Extended Attributes Dataset

UnitNumber C 12 0 Unit number.

NOTE: This field is only available with
the MLD Extended Attributes Dataset

UnitNumber2 C 12 0 Second unit number parsed from the
address line. Only available in CASS
mode.

UnitType C 5 0 Unit type.

UnitType2 C 5 0 Second unit type parsed from the
address line. Only available in CASS
mode.

UrbanAreaID C 6 0 TIGER Urban Area Identifier. Defines the
urban area if any; 0 if none.

NOTE: This field is only available with
the MLD Extended Attributes Dataset

UrbanAreaPop N 11 0 Census population of the urban area; 0 if
none.

NOTE: This field is only available with
the MLD Extended Attributes Dataset.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 415

Urbanicity 2 0 Urbanicity Indicator. An indicator that
defines, per the Census, the Urbanicity of
the Address using TIGER UACE codes
for categorization.
L – Large Urban Area
(50,000 or greater population)
S – Small Urban Area
(2,500-50,000 population)
R – Rural
X – Unknown

NOTE: This field is only available with
the MLD Extended Attributes Dataset.

UrbanizationNam
e

C 31 0 Urbanization name for Puerto Rico.

USPSRangeRecord
Type

C 2 0 USPS range record type.

ZIP C 6 0 5-digit ZIP Code.

ZIP4 C 5 0 4-digit ZIP Code extension.

ZIP9 C 10 0 9-digit ZIP Code (ZIP + 4).

ZIP10 C 11 0 9-digit ZIP Code (ZIP + 4) with dash
separator.

ZIPCARRTSort C 2 0 September 2000 data and later:
• A = Automation cart allowed, optional

cart merging allowed.
• B = Automation cart allowed, no

optional cart merging allowed.
• C = No automation cart allowed,

optional cart merging allowed.
• D = No automation cart allowed, no

optional cart merging allowed.

ZipCityDelivery C 2 0 Indicates whether Post Office has city-
delivery carrier routes
(Y or N).

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

AddressBroker Reference Manual for Windows 416

GeoStan Canada output fields

GeoStan Canada output fields are not available on AIX and Digital UNIX systems.

ZipClass C 2 0 ZIP Classification Code:
• blank = standard ZIP Code
• M = Military ZIP Code
• P = ZIP Code has PO Boxes only
• U = Unique ZIP Code (ZIP assigned to

a single organization).

ZipFacility C 2 0 Returns the USPS State Name Facility
Code.

Output String
Field Name

Data
Type
N—
num
eric
C—
char
strin
g

Width—
Number of
characters including
null terminator

Number of
decimals if
numeric Description

Output String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals
if numeric Description

AddressLine C 256 0 Address line.

City (same as
Municipality)

C 29 0 City name.

LastLine C 61 0 Complete last address line.

Latitude N 11 6 Latitude of located point (in
millionths of degrees).
See “Decimals in
input/output field
values” on page 67.

LocationQualityCode C 5 0 Code indicating the quality of
location (see “GeoStan
location codes” on
page 433).

AddressBroker Reference Manual for Windows 417

Longitude N 12 6 Longitude of located point (in
millionths of degrees).
See “Decimals in
input/output field
values” on page 67.

MatchCode C 5 0 Match code (see“GeoStan
return codes” on
page 423).

Municipality C 29 0 Canadian Municipality.

PostalCode C 10 0 Canadian Postal Code.

Province C 31 0 Canadian Province.

State (same as State) C 31 0 State name.

ZIP (same as
PostalCode)

C 6 0 5-digit ZIP Code.

Country C 29 0 Country name.

HighEndHouseNumber C 12 0 House number at high end of
range.

HighUnitNumber C 12 0 High unit number.

HouseNumber C 12 0 House number.

HouseNumberHighSuffix C 7 0 House number high suffix.

HouseNumberLowSuffix C 7 0 House number low suffix.

HouseNumberSuffix C 7 0 House number suffix.

LowUnitNumber C 12 0 Low unit number.

PostfixDirection C 3 0 Postfix direction.

RecordID C 32 0 User-provided unique record
identifier.

StreetName C 41 0 Street name, lock box, Rural
Route, or General Delivery
address.

StreetType C 5 0 Street type or suffix.

UnitNumber C 12 0 Unit number.

UnitType C 5 0 Unit type.

Output String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals
if numeric Description

AddressBroker Reference Manual for Windows 418

Spatial+ output fields

Output String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals if
numeric Description

ClosestSiteBearing N 16 0 Bearing to nearest located points. (The
maximum number of bearings returned
is determined by the
MAXIMUM_POINTS property.)

ClosestSiteDistanc
e

N 16 0 Distances to nearest located points.
(The maximum number of distances
returned is determined by the
MAXIMUM_POINTS property.)

ClosestSiteID C 128 0 IDs of nearest located points. (The
maximum number of IDs returned is
determined by the MAXIMUM_POINTS
property.)

ClosestSiteName C 128 0 Names of nearest located points. (The
maximum number of names returned is
determined by MAXIMUM_POINTS
property.)

PolygonDistance N 16 0 Distance from border of located
polygon, in feet. (The number of values
returned is determined by the
MAXIMUM_POLYGONS property.) This
value determined the sort order of the
returned polygons.

PolygonName C 128 0 Names of located polygons. (The
maximum number of names returned is
determined by the
MAXIMUM_POLYGONS property.)

PolygonStatus C 2 0 Location of point with respect to
polygon (see diagram, left).
P = A polygon was found that
contained the point.
B = A buffer area, but not a polygon,
was found that contained the point.
I = The point is inside the polygon and
the associated buffer. This can only
occur for a polygon, not a line or point
spatial object. (The number of values
returned is determined by the
MAXIMUM_POLYGONS property.)
Note: Buffer radius is set in the
BUFFER_RADIUS and
BUFFER_RADIUS_TABLE properties.

Polygon border

Buffer
radius

Buffer
edge

PolygonStatus for
this point is "P"

PolygonStatus for
this point is "B"

PolygonStatus for
this point is "I"

AddressBroker Reference Manual for Windows 419

Geographic Determination Library (GDL) output fields

Output String Field Name Data Type Width Description

GdlPolygonName String 128 Name of located polygon.

LineFarDistance String 16 Far distance between located line and the
geo-variance buffer (feet).

LineName String 128 Name of located line.

LineNearDistance String 16 Near distance between located line and the
geo-variance buffer (feet).

PointFarDistance String 16 Far distance between located point and the
geo-variance buffer (feet).

PointManhattanDistance String 16 Manhattan distance between geocoded point
and located point (feet).

PointName String 128 Name of located point.

PointNearDistance String 16 Near distance between located point and the
geo-variance buffer (feet).

PointStraightDistance String 16 Straight-line distance between geocoded
point and located point (feet).

PolygonOverlap String 16 Overlap of located polygon and the geo-
variance buffer (percent).

AddressBroker Reference Manual for Windows 420

Demographic (Census 2010) output fields

Output String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals if
numeric Description

AGGHHI10 N 16 0 2010 Aggregate Household ($000’s)

AVGHHSZ10 N 11 2 2010 Average Household Size
See “Decimals in input/output field
values” on page 67.

FAM10 N 10 0 2010 Families

FEMPOP10 N 10 0 2010 Total Female Population

GQPOP10 N 10 0 2010 Population in Group Quarters

HHCHLD1810 N 10 0 2010 Total Households with Children under 18

HHOVER6010 N 10 0 2010 Total Households with Adults over 60

HH15TO2410 N 10 0 2010 Householder Age 15-24

HH25TO3410 N 10 0 2010 Householder Age 25-34

HH35TO4410 N 10 0 2010 Householder Age 35-44

HH45TO5410 N 10 0 2010 Householder Age 45-54

HH55TO6410 N 10 0 2010 Householder Age 55-64

HH65TO7410 N 10 0 2010 Householder Age 65-74

HH75TO8410 N 10 0 2010 Householder Age 75-84

HH85OVR10 N 10 0 2010 Householder Age 85+

HH10 N 10 0 2010 Households

HU10 N 10 0 2010 Total Housing Units

OWNOCCHU10 N 10 0 2010 Owner Occupied Housing Units

MEDAGE10 N 11 1 2010 Median Age
See “Decimals in input/output field
values” on page 67.

MEDAGEF10 N 11 1 2010 Median Age Female
See “Decimals in input/output field
values” on page 67.

MEDAGEM10 N 11 1 2010 Median Age Male
See “Decimals in input/output field
values” on page 67.

MEDFAMI10 N 10 0 2010 Median Family Income

AddressBroker Reference Manual for Windows 421

MEDHHI10 N 10 0 2010 Median Household Income

MEDHOMEV10 N 10 0 2010 Median Housing Value

POP10 N 10 0 2010 Total Population

XASNPOP10 N 11 2 2010 % Asian/Pacific Islander Population
See “Decimals in input/output field
values” on page 67.

XBLKPOP10 N 11 2 2010 % Black Population
See “Decimals in input/output field
values” on page 67.

XINDPOP10 N 11 2 2010 % American Indian/Eskimo Population
See “Decimals in input/output field
values” on page 67.

XWHTPOP10 N 11 2 2010 % White Population
See “Decimals in input/output field
values” on page 67.

BG N 12 0 Census 2010 Block Group index

BG10 N 12 0 Census 2010 Block Group output field

CSUBFIPS10 C 70 0 comma-delimited set of Census County
Subdivision FIPS 55 Code values

PLACEFPS10 C 50 0 comma-delimited set of Place FIPS 55 Code
values

NECTA C 11 0 comma-delimited set of 2010 New England City
and Town Area code values

NECTA_NAME C 120 0 comma-delimited set of 2010 New England City
and Town Area names

DIVISION C 11 0 comma-delimited set of 2010 Division values

DIVISION_N C 100 0 comma-delimited set of 2010 Division names

Output String
Field Name

Data Type
N—numeric
C—char
string

Width—
Number of
characters
including
null
terminator

Number of
decimals if
numeric Description

16 – Match codes

In this chapter

GeoStan return codes 423
Definitions for 1st-3rd hex digit match code values 424
Definitions for Extended Match Code (3rd hex digit) values 425
Definitions for the Reverse PBKey Lookup “Vhhh” return code val-
ues 426
Definitions for “Ennn” return code values 426
Correct last line match codes 427

GeoStan Canada return codes 430

AddressBroker Reference Manual for Windows 423

When you use Centrus® AddressBroker to perform address standardization, a match code
is returned in the MatchCode output field. The match code is an alpha-numeric code that
encapsulates information about the address standardization process—including whether or
not a match was found, information about the type of match found (when applicable), and
information about why no match was found (when applicable). This chapter provides the
information you need to interpret these codes.

GeoStan return codes
The following table contains the match code values. You can find a description of the hex
digits for the different match codes in the table following the match code table.

Code Description

Ahhh Same as Shhh, but indicates match to an alias name record or an alternate record.

Chh Street address did not match, but located a street segment based on the input ZIP
Code or city.

D00 Matched to a small town with P.O. Box or General Delivery only.

Ghhh Matched to an auxiliary file.

Hhhh House number was changed.

Jhhh Matched to a User Dictionary.

P Successful Reverse APN lookup match.

Qhhh Matched to USPS range records with unique ZIP Codes. CASS rules prohibit altering
an input ZIP if it matches a unique ZIP Code value.

Rhhh Matched to a ranged address.

Shhh Matched to USPS data. This is considered the best address match, because it
matched directly against the USPS list of addresses. S is returned for a small number
of addresses when the matched address has a blank ZIP + 4.

Thhh Matched to a street segment record.

Uhhh Matched to USPS data but cannot resolve the ZIP + 4 code without the firm name or
other information. CASS mode returns an E023 (multiple match) error code.

Vhhh Matched to MLD and DVDMLDR using Reverse PBKey Lookup. For match code
values, see “Definitions for the Reverse PBKey Lookup “Vhhh”
return code values” on page 426.

Xhhh Matched to an intersection of two streets, for example, “Clay St & Michigan Ave.” The
first hex digit refers to the last line information, the second hex digit refers to the first
street in the intersection, and the third hex digit refers to the second street in the
intersection.

NOTE: The USPS does not allow intersections as a valid deliverable address.

Yhhh Same as Xhhh, but an alias name record was used for one or both streets.

Za No address given, but verified the provided ZIP Code .

AddressBroker Reference Manual for Windows 424

Definitions for 1st-3rd hex digit match code values

The following table contains the description of the hex digits for the match code values.

Note: The third hex digit is only populated for intersection matches or as part of the
Extended Match Code.

– For intersection matches, use the table below for the 3rd hex digit definition.
– For Extended Match Code, see Definitions for Extended Match Code (3rd hex digit)

values in the next section.

a Zh may be returned if Correct Last Line is set to True. For more information, see Correct
last line match codes and Using correct last line.

Code In first hex position means: In second and third hex position means:

0 No change in last line. No change in address line.

1 ZIP Code changed. Street type changed.

2 City changed. Predirectional changed.

3 City and ZIP Code changed. Street type and predirectional changed.

4 State changed. Postdirectional changed.

5 State and ZIP Code changed. Street type and postdirectional changed.

6 State and City changed. Predirectional and postdirectional changed.

7 State, City, and ZIP Code changed. Street type, predirectional, and postdirectional
changed.

8 ZIP + 4 changed. Street name changed.

9 ZIP and ZIP + 4 changed. Street name and street type changed.

A City and ZIP + 4 changed. Street name and predirectional changed.

B City, ZIP, and ZIP + 4 changed. Street name, street type, and predirectional
changed.

C State and ZIP + 4 changed. Street name and postdirectional changed.

D State, ZIP, and ZIP + 4 changed. Street name, street type, and postdirectional
changed.

E State, City, and ZIP + 4 changed. Street name, predirectional, and postdirectional
changed.

F State, City, ZIP, and ZIP + 4
changed.

Street name, street type, predirectional, and
postdirectional changed.

AddressBroker Reference Manual for Windows 425

Definitions for Extended Match Code (3rd hex digit) values

As mentioned in Understanding Extended Match Codes, when set to True,
MATCH_CODE_EXTENDED returns additional information about any changes in the house
number, unit number and unit type fields in the matched address, as well as whether there
was address information that was ignored. This additional information is provided in a 3rd
hex digit that is appended to match codes for address-level matches only - A, G, H, J, Q, R,
S, T or U (see GeoStan return codes).

 “Address information ignored” is specified when any of the following conditions apply:

• The output address has a mail stop (Mailstop).
• The output address has a second address line (AddressLine2).
• The input address is a dual address (two complete addresses in the input address).

For example, “4750 Walnut St. P.O Box 50”.
• The input last line has extra information that is not a city, state or ZIP Code, and is

ignored. For example, “Boulder, CO 80301 USA”, where “USA” is ignored when
matching.

The following table contains the description of the 3rd hex digit Extended match code return
values:

Note: For Auxiliary file matches, the 3rd hex digit is always “0”.

Code In 3rd hex position means:

0 Matched on all address information on line, including Unit Number and Unit Type
if included.

1 Matched on Unit Number and Unit Type if included. Extra information on address
line ignored. Extra information not considered for matching moved to
AddressLine2 or Mail Stop field.

2 Matched on Unit Number. Unit Type changed.

3 Matched on Unit Number. Unit Type changed. Extra information on address line
ignored. Extra information not considered for matching moved to
AddressLine2 or Mail Stop field.

4 Unit Number changed or ignored.

5 Unit Number changed or ignored. Extra information on address line ignored.
Extra information not considered for matching moved to AddressLine2 or
Mail Stop field.

6 Unit Number changed or ignored. Unit Type changed or ignored.

7 Unit Number changed or ignored. Unit Type changed or ignored. Extra
information on address line ignored. Extra information not considered for
matching moved to AddressLine2 or Mail Stop field.

8 Matched on Unit Number and Unit Type if included. House Number changed or
ignored.

9 Matched on Unit Number and Unit Type if included. House Number changed or
ignored. Extra information on address line ignored. Extra information not
considered for matching moved to AddressLine2 or Mail Stop field.

AddressBroker Reference Manual for Windows 426

Definitions for the Reverse PBKey Lookup “Vhhh” return code values

The following table lists the “Vhhh” hex digit values returned with Reverse PBKey Lookup.
For more information, see “Reverse PreciselyID Lookup” on page 21.

Definitions for “Ennn” return code values

The following table describes the values returned when the application cannot find a match
code

A Matched on Unit Number. Unit Type changed. House Number changed or
ignored.

B Matched on Unit Number. Unit Type changed. House Number changed or
ignored. Extra information on address line ignored. Extra information not
considered for matching moved to AddressLine2 or Mail Stop field.

C House Number changed or ignored. Unit Number changed or ignored.

D House Number changed or ignored. Unit Number changed or ignored. Extra
information on address line ignored. Extra information not considered for
matching moved to AddressLine2 or Mail Stop field.

E House Number changed or ignored. Unit Number changed or ignored. Unit Type
changed or ignored.

F House Number changed or ignored. Unit Number changed or ignored. Unit Type
changed or ignored. Extra information on address line ignored. Extra information
not considered for matching moved to AddressLine2 or Mail Stop field.

Code In 3rd hex position means:

Match Code Definition

V000 Match made using input pbKey. One Standard or Enhanced
point address result returned depending on license.

V001 Match made using input pbKey. Multiple Standard and/or
Enhanced point address variations results returned depending
on license.

V002 Match made using input pbKey. One Standard, some Enhanced
point address variations results returned depending on license.

V003 Match made using input pbKey. Multiple Standard, some
Enhanced point address variations results depending on
license.

Code Description

Ennna Indicates an error, or no match. This can occur when the address
entered does not exist in the database, or the address is badly formed
and cannot be parsed correctly. The last three digits of an error code
indicate which parts of an address the application could not match to
the database.

nnn = 000 No match made.

AddressBroker Reference Manual for Windows 427

Correct last line match codes

As mentioned in Using correct last line, when set to True, GS_FIND_CORRECT_LASTLINE
corrects elements of the output last line, providing a good ZIP Code or close match on the
soundex even if the address would not match or was non-existent.

nnn = 001 Low level error.

nnn = 002 Could not find data file.

nnn = 003 Incorrect GSD file signature or version ID.

nnn = 004 GSD file out of date. Only occurs in CASS mode.

nnn = 010 No city and state or ZIP Code found.

nnn = 011 Input ZIP not in the directory.

nnn = 012 Input city not in the directory.

nnn = 013 Input city not unique in the directory.

nnn = 014 Out of licensed area. Only occurs if using Group 1 licensing
technology.

nnn = 015 Record count is depleted and license has expired.

nnn = 020 No matching streets found in directory.

nnn = 021 No matching cross streets for an intersection match.

nnn = 022 No matching segments.

nnn = 023 Unresolved match.

nnn = 024 No matching segments. (Same as 022.)

nnn = 025 Too many possible cross streets for intersection matching.

nnn = 026 No address found when attempting a multiline match.

nnn = 027 Invalid directional attempted.

nnn = 028 Record also matched EWS data, therefore the application denied the
match.

nnn = 029 No matching range, single street segment found

nnn = 030 No matching range, multiple street segments found

nnn = 040 No match found using input PBKey with Reverse PBKey Lookup.

nnn = 041 Not licensed to return Enhanced point address(es) found for input
pbKey. Additional Reverse PBKey Lookup license option required to
return results.

a Ehnn may be returned if Correct Last Line is set to True. For more information see Correct
last line match codes and Using correct last line.

Code Description

AddressBroker Reference Manual for Windows 428

The feature works when GS_FIND_ADDRCODE is True and the address does not match a
candidate or when GS_FIND_Z_CODE is True and only last line information is input. The match
codes returned are similar to Z and Ennn in that the first letter remains the same with the
second digit changing.

Code Description

Zh No address given, but verified the provided ZIP Code .

h = 0 No change in last line.

h = 1 ZIP Code changed.

h = 2 City changed.

h = 3 City and ZIP Code changed.

h = 4 State changed.

h = 5 State and ZIP Code changed.

h = 6 State and City changed.

h = 7 State, City, and ZIP Code changed.

h = 8 ZIP + 4 changed.

h = 9 ZIP and ZIP + 4 changed.

h = A City and ZIP + 4 changed.

h = B City, ZIP, and ZIP + 4 changed.

h = C State and ZIP + 4 changed.

h = D State, ZIP, and ZIP + 4 changed.

h = E State, City, and ZIP + 4 changed.

Ehnn Indicates an error, or no match. This can occur when the address
entered does not exist in the database, or the address is badly
formed and cannot be parsed correctly. The second digit of the error
code is a hex digit which details the changes that were made to the
last line information to correct the last line. The last two digits of an
error code indicate which parts of an address the application could
not match to the database.

h = 0 No change in last line.

h = 1 ZIP Code changed.

h = 2 City changed.

h = 3 City and ZIP Code changed.

h = 4 State changed.

h = 5 State and ZIP Code changed.

h = 6 State and City changed.

h = 7 State, City, and ZIP Code changed.

AddressBroker Reference Manual for Windows 429

h = 8 ZIP + 4 changed.

h = 9 ZIP and ZIP + 4 changed.

h = A City and ZIP + 4 changed.

h = B City, ZIP, and ZIP + 4 changed.

h = C State and ZIP + 4 changed.

h = D State, ZIP, and ZIP + 4 changed.

h = E State, City, and ZIP + 4 changed.

nn = 00 No match made.

nn = 01 Low level error.

nn = 02 Could not find data file.

nn = 03 Incorrect GSD file signature or version ID.

nn = 04 GSD file out of date. Only occurs in CASS mode.

nn = 10 No city and state or ZIP Code found.

nn = 11 Input ZIP not in the directory.

nn = 12 Input city not in the directory.

nn = 13 Input city not unique in the directory.

nn = 14 Out of licensed area. Only occurs if using Group 1 licensing
technology.

nn = 15 Record count is depleted and license has expired.

nn = 20 No matching streets found in directory.

nn = 21 No matching cross streets for an intersection match.

nn = 22 No matching segments.

nn = 23 Unresolved match.

nn = 24 No matching segments. (Same as 022.)

nn = 25 Too many possible cross streets for intersection matching.

nn = 26 No address found when attempting a multiline match.

nn = 27 Invalid directional attempted.

nn = 28 Record also matched EWS data, therefore the application denied
the match.

nn = 29 No matching range, single street segment found

nn = 30 No matching range, multiple street segments found

Code Description

AddressBroker Reference Manual for Windows 430

GeoStan Canada return codes
The following tables describe the codes returned in MatchCode when a match is found. The
first character, an alphabetic element, describes the type of match found. The two- or three-
digit numeric (or hexadecimal) element of the code provides detailed information about the
match.

standardized address is the correct ZIP Code because GeoStan did not standardize the
address; therefore, GeoStan does not return geocoding or Census Block information.

Values returned in MatchCode when a match is found

The returned address is the best address because it was matched directly against the CPC
list of deliverable addresses. See below for the interpretation of the hex digits.

Return code Explanation

Chhh Indicates a match found in CPC data; changes were made to the address to
make it deliverable.

Vhhh Indicates a match found in CPC data; the input address is valid and no
changes were made.

Code First hex position indicates Second and third hex position indicates

0 No change in last line. No change in street type, direction, number, or name.

1 Postal Code was changed. Street type was changed.

2 Municipality was changed. Postfix direction was changed.

3 Municipality and Postal Code were
changed.

Street type and Postfix direction were changed.

4 Province was changed. House number was changed.

5 Province and Postal Code were
changed.

Street type and House number were changed.

6 Province and Municipality were
changed.

House number and Postfix direction were changed.

7 Province, Municipality, and Postal
Code were changed.

Street type, Postfix direction, and House number
were changed.

8 Reserved for future use. Street name was changed.

9 Reserved for future use. Street name and type were changed.

A Reserved for future use. Street name and Postfix direction were changed.

B Reserved for future use. Street name, Street type, and Postfix direction were
changed.

AddressBroker Reference Manual for Windows 431

C Reserved for future use. Street name and House number were changed.

D Reserved for future use. Street name, Street type, and House number were
changed.

E Reserved for future use. Street name, House number and Postfix direction
were changed.

F Reserved for future use. Street name, Street type, House number and Postfix
direction were changed.

Code Explanation

Ecnn Indicates an error or no match. This can occur when the address entered
either did not exist in the GeoStan Canada Directory, or the address was
badly malformed and could not be passed correctly.

nn = 01 Internal error.

nn = 10 No Municipality+Province or Postal Code found.

nn = 20 No matching addresses.

nn = 22 Missing or wrong street name.

nn = 23 Could not resolve address.

nn = 25 Inconsistent address.

nn = 26 Missing or wrong box range.

nn = 27 Missing or wrong unit range.

nn = 30 Reverse lookup was performed

nn = 40 Address vs. Postal Code conflict, SERP rule prevents correction.

nn = 41 Postal Code has multiple street names, SERP rule prevents correction.

nn = 42 Change of delivery mode attempted, SERP rule prevents correction.

nn = 43 Total number of changed address elements exceeds maximum.

nn = 44 Change of address type is not allowed for current setting.

nn = 50 Minor error.

nn = 66 Invalid record. During validation, an error occurred.

Code First hex position indicates Second and third hex position indicates

17 – Location Codes

In this chapter

GeoStan location codes 433
Address location codes 433
Street centroid location codes 437
ZIP + 4 centroid location codes 438
Geographic centroid location codes 440
GeoStan Canada location codes 441

441

AddressBroker Reference Manual for Windows 433

When you use AddressBroker to geocode your address data, a location quality code is
returned in the LocationQualityCode output field. The location quality code encapsulates
information about the geocoding process—including whether or not the address was
assigned a geocode and its level of accuracy (when applicable). This chapter provides the
information you need to interpret these codes.

GeoStan location codes
There are two types of geocodes: Address, and ZIP centroids. The value “E” is assigned
when no location is available.

Address geocodes are simple to interpret because they indicate a geocode made directly to
a street network segment (or two segments, in the case of an intersection). ZIP centroids,
however, have a range of “confidence” depending on how the centroid was determined.

“E” indicates that no location is available. There are a number of situations that resolve to
this code including:

• Submitting an input address that had no ZIP Code information or otherwise failed to
standardize. The ZIP Code returned with the non-standardized address cannot be
assumed to be the correct ZIP Code because the address was not standardized;
therefore, no geocoding or Census Block information is returned.

• Requesting ZIP Code centroids of a high quality, and one is not available for that match.
• Requesting location quality codes when you are not licensed for geocoding.
• Requesting ZIP Code centroids, and no matching 5-digit ZIP Code is found (infrequent)

in the z9 file.

Address location codes
Address location codes detail the known qualities about the geocode. An address location
code has the following characters.

1st character Always an A indicating an address location.

2nd character May be one of the following

C Interpolated address point location.

G Auxiliary file data location.

I Application infers the correct segment from the
candidate records.

P Point-level data location.

R Location represents a ranged address.

S Location on a street range.

X Location on an intersection of two streets.

3rd and 4th characters Digit indicating other qualities about the location.

AddressBroker Reference Manual for Windows 434

The following table contains the address codes.

Code Description

AGn Indicates an auxiliary file for a geocode match where n is one of the
following values:

n=0 The geocode represents the center of a parcel or building.

n=1 The geocode is an interpolated address along a segment.

n=2 The geocode is an interpolated address along a segment, and the side
of the street cannot be determined from the data provided in the
auxiliary file record.

n=3 The geocode is the midpoint of the street segment.

APnn Indicates a point-level geocode match representing the center of a
parcel or building, where nn is one of the following values:

nn=00 User Dictionary centroid. Geocode returned by a User Dictionary.

nn=02 Parcel centroid
Indicates the center of an assessor’s parcel (tract or lot) polygon. When
the center of an irregularly shaped parcel falls outside of its polygon, the
centroid is manually repositioned to fall inside the polygon as closely as
possible to the actual center.

nn=04 Address point
Represents field-collected GPS points with field-collected address
data.

nn=05 Structure point
Indicates a location within a building footprint polygon that is associated
with the matched address.
Usually, residential addresses consist of a single building. For houses
with outbuildings (detached garages, sheds, barns, etc.), the structure
point will typically fall on the primary structure.
Condominiums and duplexes have multiple, individual addresses and
may have multiple structure points for each building. Multi-unit
buildings are typically represented by a single structure point
associated with the primary/base address, rather than discrete
structure points for each unit.
Shopping malls, industrial complexes, and academic or medical center
campuses are commonly represented by a single structure point
associated with the primary/base address for the entire complex. When
multiple addresses are assigned to multiple buildings within one
complex, multiple structure points may be represented within the same
complex.

nn=07 Manually placed
Address points are manually placed to coincide with the midpoint of an
assessor’s parcel’s street frontage at a distance from the center line.

nn=08 Front door point
Represents the designated primary entrance to a building. If a building
has multiple entrances and there is no designated primary entrance or
the primary entrance cannot readily be determined, the primary
entrance is chosen based on proximity to the main access street and
availability of parking.

nn=09 Driveway offset point
Represents a point located on the primary access road (most
commonly a driveway) at a perpendicular distance of between 33-98
feet (10-30 meters) from the main roadway.

AddressBroker Reference Manual for Windows 435

nn=10 Street access point
Represents the primary point of access from the street network. This
address point type is located where the driveway or other access road
intersects the main roadway.

nn=21 Base parcel point
The Centrus point data includes individual parcels that may be
"stacked".These stacked parcels are individually identified by their unit
or suite number, and GeoStan is able to match to this unit number and
return the correct APN.If an input address is for a building or complex,
without a unit number.The "base" parcel information returns and will not
standardize to a unit number or return additional information such as an
APN.

nn=22 Backfill address point
The precise parcel centroid is unknown. The address location assigned
is based on two known parcel centroids.

nn=23 Virtual address point
The precise parcel centroid is unknown. The address location assigned
is relative to a known parcel centroid and a street segment end point.

nn=24 Interpolated address point
The precise parcel centroid is unknown. The address location assigned
is based on street segment end points.

AIn The correct segment is inferred from the candidate records at match
time.

ASn House range address geocode. This is the most accurate street
interpolated geocode available.

AIn, ASn, and ACnh share the same values for the 3rd character “n” as follows:

n=0 Best location.

n=1 Street side is unknown. The Census FIPS Block ID is assigned from the
left side; however, there is no assigned offset and the point is placed
directly on the street.

n=2 Indicates one or both of the following:
• The address is interpolated onto a TIGER segment that did not

initially contain address ranges.
• The original segment name changed to match the USPS spelling.

This specifically refers to street type, predirectional, and
postdirectional.

Note: Only the second case is valid for non-TIGER data because
segment range interpolation is only completed for TIGER data.

n=3 Both 1 and 2.

n=7 Placeholder. Used when starting and ending points of segments
contain the same value and shape data is not available.

ACnh Indicates a point-level geocode that is interpolated between 2 parcel
centroids (points), a parcel centroid and a street segment endpoint, or
2 street segment endpoints.

The ACnh 4th character “h” values are as follows:

h=0 Represents the interpolation between 2 points, both coming from User
Dictionaries.

Code Description

AddressBroker Reference Manual for Windows 436

h=1 Represents the interpolation between 2 points. The low boundary came
from a User Dictionary and the high boundary, from a non-User
Dictionary.

h=2 Represents the interpolation between 1 point and 1 street segment end
point, both coming from User Dictionaries.

h=3 Represents the interpolation between 1 point (low boundary) and 1
street segment end point (high boundary). The low boundary came
from a User Dictionary and the high boundary from a non-User
Dictionary.

h=4 Represents the interpolation between 2 points. The low boundary came
from a non-User Dictionary and the high boundary from a User
Dictionary.

h=5 Represents the interpolation between 2 points, both coming from non-
User Dictionaries.

h=6 Represents the interpolation between 1 point (low boundary) and 1
street segment end point (high boundary). The low boundary came
from a non-User Dictionary and the high boundary from a User
Dictionary.

h=7 Represents the interpolation between 1 point and 1 street segment end
point and both came from non-User Dictionaries.

h=8 Represents the interpolation between 1 street segment end point and
1 point, both coming from User Dictionaries.

h=9 Represents the interpolation between 1 street segment end point (low
boundary) and 1 point (high boundary). The low boundary came from a
User Dictionary and the high boundary from a non-User Dictionary.

h=A Represents the interpolation between 2 street segment end points,
both coming from User Dictionaries.

h=B Represents the interpolation between 2 street segment end points. The
low boundary came from a User Dictionary and the high boundary from
a non-User Dictionary.

h=C Represents the interpolation between 1 street segment end point (low
boundary) and 1 point (high boundary). The low boundary came from a
non-User Dictionary and the high boundary from a User Dictionary.

h=D Represents the interpolation between 1 street segment end point and
1 point, both coming from non-User Dictionary.

h=E Represents the interpolation between 2 street segment end points. The
low boundary came from a non-User Dictionary and the high boundary
from a User Dictionary.

h=F Represents the interpolation between 2 street segment end points,
both coming from non-User Dictionaries.

ARn Ranged address geocode, where “n” is one of the following:

n=1 The geocode is placed along a single street segment, midway between
the interpolated location of the first and second input house numbers in
the range.

n=2 The geocode is placed along a single street segment, midway between
the interpolated location of the first and second input house numbers in
the range, and the side of the street is unknown. The Census FIPS
Block ID is assigned from the left side; however, there is no assigned
offset and the point is placed directly on the street.

Code Description

AddressBroker Reference Manual for Windows 437

Street centroid location codes
Street centroid location codes indicate the Census ID accuracy and the position of the
geocode on the returned street segment. A street centroid location code has the following
characters.

The following table contains the values and descriptions for the location codes.

n=4 The input range spans multiple USPS segments. The geocode is
placed on the endpoint of the segment which corresponds to the first
input house number, closest to the end nearest the second input house
number.

n=7 Placeholder. Used when the starting and ending points of the matched
segment contain the same value and shape data is not available.

AXn Intersection geocode, where “n” is one of the following:

n=3 Standard single-point intersection computed from the center lines of
street segments.

n=8 Interpolated (divided-road) intersection geocode. Attempts to return a
centroid for the intersection.

Code Description

1st character Always “C” indicating a location derived from a street segment.

2nd character Census ID accuracy based on the search area used to obtain matching
Street Segment.

3rd character Location of geocode on the returned street segment.

Character
position Code Description

2nd Character

B Block Group accuracy (most accurate). Based on input ZIP
Code.

T Census Tract accuracy. Based on input ZIP Code.

C Unclassified Census accuracy. Normally accurate to at least the
County level. Based on input ZIP Code.

F Unknown Census accuracy. Based on Finance area.

P Unknown Census accuracy. Based on input City.

3rd Character

C Segment Centroid.

L Segment low-range end point.

H Segment high-range end point.

AddressBroker Reference Manual for Windows 438

ZIP + 4 centroid location codes
ZIP + 4® centroid location codes indicate the quality of two location attributes: Census ID
accuracy and positional accuracy. A ZIP + 4 centroid location code has the following
characters.

The following table contains the values and descriptions for the location codes.

1st character Always “Z” indicating a location derived from a ZIP centroid.

2nd character Census ID accuracy.

3rd character Location type.

4th character How the location and Census ID was defined. Provided for completeness,
but may not be useful for most applications.

Character
position Code Description

2nd Character

B Block Group accuracy (most accurate).

T Census Tract accuracy.

C Unclassified Census accuracy. Normally accurate to at least the
County level.

3rd Character

5 Location of the Post Office that delivers mail to the address, a 5-
digit ZIP Code centroid, or a location based upon locale (city).
See the 4th character for a precise indication of locational
accuracy.

7 Location based upon a ZIP + 2 centroid. These locations can
represent a multiple block area in urban locations, or a slightly
larger area in rural settings.

9 Location based upon a ZIP + 4 centroid. These are the most
accurate centroids and normally place the location on the
correct block face. For a small number of records, the location
may be the middle of the entire street on which the ZIP + 4 falls.
See the 4th character for a precise indication of locational
accuracy.

4th Character

A Address matched to a single segment. Location assigned in the
middle of the matched street segment, offset to the proper side
of the street.

a Address matched to a single segment, but the correct side of the
street is unknown. Location assigned in the middle of the
matched street segment, offset to the left side of the street, as
address ranges increase.

B Address matched to multiple segments, all segments have the
same Block Group. Location assigned to the middle of the
matched street segment with the most house number ranges
within this ZIP + 4. Location offset to the proper side of the
street.

AddressBroker Reference Manual for Windows 439

b Same as methodology B except the correct side of the street is
unknown. Location assigned in the middle of the matched street
segment, offset to the left side of the street, as address ranges
increase.

C Address matched to multiple segments, with all segments
having the same Census Tract. Returns the Block Group
representing the most households in this ZIP + 4. Location
assigned to t he middle of the matched street segment with the
most house number ranges within this ZIP + 4. Location offset
to the proper side of the street.

c Same as methodology C except the correct side of the street is
unknown. Location assigned in the middle of the matched street
segment, offset to the left side of the street, as address ranges
increase.

D Address matched to multiple segments, with all segments
having the same County. Returns the Block Group representing
the most households in this ZIP + 4. Location assigned to the
middle of the matched street segment with the most house
number ranges within this ZIP + 4. Location offset to the proper
side of the street.

d Same as methodology D except the correct side of the street is
unknown. Location assigned in the middle of the matched street
segment, offset to the left side of the street, as address ranges
increase.

E Street name matched; no house ranges available. All matched
segments have the same Block Group. Location placed on the
segment closest to the center of the matched segments. In most
cases, this is on the mid-point of the entire street.

F Street name matched; no house ranges available. All matched
segments have the same Census Tract. Location placed on the
segment closest to the center of the matched segments. In most
cases, this is on the mid-point of the entire street.

G Street name matched (no house ranges available). All matched
segments have the same County. Location placed on the
segment closest to the center of the matched segments. In most
cases, this is on the mid-point of the entire street.

H Same as methodology G, but some segments are not in the
same County. Used for less than .05% of the centroids.

I Created ZIP + 2 cluster centroid as defined by methodologies A,
a, B, and b. All centroids in this ZIP + 2 cluster have the same
Block Group. Location assigned to the ZIP + 2 centroid.

J Created ZIP + 2 cluster centroid as defined by methodologies A,
a, B, b, C, and c. All centroids in this ZIP + 2 cluster have the
same Census Tract. Location assigned to the ZIP + 2 centroid.

K Created ZIP + 2 cluster centroid as defined by methodologies A,
a, B, b, C, c, D, and d. Location assigned to the ZIP + 2 centroid.

L Created ZIP + 2 cluster centroid as defined by methodology E.
All centroids in this ZIP + 2 cluster have the same Block Group.
Location assigned to the ZIP + 2 centroid.

M Created ZIP+2 cluster centroid as defined by methodology E
and F. All centroids in this ZIP + 2 cluster have the same Census
Tract. Location assigned to the ZIP + 2 centroid.

Character
position Code Description

AddressBroker Reference Manual for Windows 440

Geographic centroid location codes
Geographic centroid location codes indicate the quality of two location attributes: the
geographic location and area type

The following table contains the values and descriptions for the location codes.

N Created ZIP + 2 cluster centroid as defined by methodology E,
F, G, and H. Location assigned to the ZIP + 2 centroid.

O ZIP Code is obsolete and currently not used by the USPS.
Historic location assigned.

V Over 95% of addresses in this ZIP Code are in a single Census
Tract. Location assigned to the ZIP Code centroid.

W Over 80% of addresses in this ZIP Code are in a single Census
Tract. Reasonable Census Tract accuracy. Location assigned to
the ZIP Code centroid.

X Less than 80% of addresses in this ZIP Code are in a single
Census Tract. Census ID is uncertain. Location assigned to the
ZIP Code centroid.

Y Rural or sparsely populated area. Census code is uncertain.
Location based upon the USGS places file.

Z P.O. Box or General Delivery addresses. Census code is
uncertain. Location based upon the Post Office location that
delivers the mail to that address

Character
position Code Description

1st character Always “G” indicating a location derived from a geographic centroid.

2nd character Geographic area type.

Character
position Code Description

2nd Character

M Municipality (city).

C County.

S State.

AddressBroker Reference Manual for Windows 441

GeoStan Canada location codes
If a valid Postal Code centroid is found, one of the following location codes is returned:

Code Description

CAN6 Postal Code level geocode.

EC Indicates that a geocode is unavailable.

18 – Status Codes

In this chapter

Understanding AddressBroker status codes 443
Example status codes 444

AddressBroker Reference Manual for Windows 443

This chapter describes status codes, messages, and exceptions you may receive from
AddressBroker.

AddressBroker status codes and messages provide an indication of the relative success of
executing AddressBroker functions. These status codes and messages allow your code to
handle problems that may arise during the execution of AddressBroker.

Understanding AddressBroker status codes
Most of the functions and methods in the C, C++, and ActiveX interfaces return a Boolean
value TRUE (or 1) to indicate successful execution. If FALSE is returned or an exception is
thrown, use the GetStatus function to retrieve the status code and message.

Note: AddressBroker Java clients use a different mechanism for handling errors. Java
exceptions are described in “AddressBroker Java exceptions” on page 139.

Status codes have ten digits. The code parses into the following categories: success status,
severity, facility, message number, and a low-level product code. See the figure below,
which explains how to interpret the code. Precisely recommends handling status codes
based upon status severity:

Informative (0) – No special handling of these codes or messages required.

Status code and message provided for informational purposes only.

Warning (1) – Generally, no special handling of these codes or messages required.

The continued execution of AddressBroker does not result in any problems. However,
the status code and message indicates a situation you need to be aware of. The most
common occurrences of this status severity include:

• Calling GetRecord when no output records are available.
• Calling GetField when a multi-valued output field contains no further values.
• Calling LookupRecord when the match is not completely successful (i.e., the address

line or last line are not completely resolved).

Severe (2) – Requires corrective action.

If corrective action is taken, continued execution of AddressBroker is possible. The
most common occurrences of this status severity include:

• Calling SetProperty with invalid property names.
• ValidateProperties is to be unable to validate one or more properties.
• Calling SetField with invalid field names or values.
• Calling LookupRecord or ProcessRecords with invalid input (missing records).

Fatal (3) – Continued execution of AddressBroker results in unrecoverable errors.

AddressBroker Reference Manual for Windows 444

Generally, these errors occur from internal memory management problems. Verify that
your computer has sufficient memory to execute the AddressBroker application. If
problems persist after correcting any memory management problems, please contact
Precisely for assistance. Be sure to report the status code number and any status
messages.

The example below shows the significance of each digit in the status code. Example
status codes provides some example status codes. Explanation of digits in status codes

Example status codes

Success Code (digit 1)
 0 = success
 1 = success (but with Severity code 1)

 2 = failure

Severity Code (digit 2)
 0 = informative
 1 = warning
 2 = severe
 3 = fatal

Facility Code (digits 3 and 4)
 00 = facility independent
 01 = base object
 02 = server object
 03 = client object
 04 = communications management
 05 = local object
 06 = memory management
 07 = file object

Message number (digits 5, 6, 7, 8)

 Unique code ranges for each product.

Low-level product code (digits 9, 10)
 00 = product independent
 01 = Geostan
 02 = Spatial+
 03 = Demographics

1 2 5 6 7 8 9 103 4

0000000000 (returned as 0) Success code: 0 successful completion

Severity code: 0 informative

Facility code: 00 facility independent

Message code: 0000 no message

Product code: 00 product independent

AddressBroker Reference Manual for Windows 445

1101020100 Success code: 1 successful completion

Severity code: 1 warning

Facility code: 01 base object

Message code: 0201 message available

Product code: 00 product independent

2302000600 Success code: 2 failure

Severity code: 3 severe

Facility code: 02 server object

Message code: 0006 message available

Product code: 00 product independent

2306105200 Success code: 2 failure

Severity code: 3 fatal

Facility code: 06 memory management

Message code: 1052 message available

Product code: 00 product independent

2305001001 Success code: 2 failure

Severity code: 3 fatal

Facility code: 05 local object

Message code: 0010 message available

Product code: 01 low-level GeoStan error

A – Advanced Concepts

In this appendix

This appendix discusses optional AddressBroker processing modes
and other features you might want to incorporate into your
applications.

Address line input modes 447
Address preference 450

AddressBroker Reference Manual for Windows 447

Address line input modes

xx

xx no space2

x3

x4

AddressBroker provides four ways of entering your address information: two-line (normal),
two-line parsed last line, parsed fields, and multiline. You select one of these predefined
input modes with the AddressBroker INPUT_MODE property.

The input fields you select must be compatible with the value you assign to INPUT_MODE. For
a complete listing of fields to use with INPUT_MODE, see “Tables of input fields” on page 392.

The output fields available depend on the settings of AddressBroker’s INPUT_MODE and the
OUTPUT_FIELD_LIST properties.

The input mode you choose affects another AddressBroker property—ADDRESS_PREFERENCE
(see page 450).

Two-line input mode

Two-line (normal) address input mode lets you pass two address lines as input to
AddressBroker. For two-line matching, use the following fields and settings:

• Address input fields = AddressLine, AddressLine2, LastLine

The information in these fields may include, but is not limited to: house number, street,
unit number, PO Box, firm name, city, state, and ZIP Code. If your data includes
addresses in Puerto Rico, you may also use the UrbanizationName field. If your data
includes addresses in Canada, you may also use the Province, Municipality, and Postal
Code fields.

• Set AddressBroker’s INPUT_MODE property to AB_INPUT_NORMAL (default).

AddressBroker extracts information from AddressLine and AddressLine2. A standardized
address is returned (when possible) in both the AddressLine and AddressLine2 output
fields. LastLine address information is standardized and returned in the LastLine output
field.

AddressBroker Reference Manual for Windows 448

Sometimes a two-line input address is returned in a single output field. For example, given
the input:

25 Main (AddressLine)

Set 200 (AddressLine2)

New York, NY (LastLine)

AddressBroker returns:

123 Main St Ste 200 (AddressLine)

(AddressLine2)

New York, NY, 10044-0052 (LastLine)

In this example, the unit number and type have been appended to the first line.

Two-line parsed last line input mode

Two-line parsed last line address input mode is the same as two-line input, except the
LastLine field is replaced by the City, State and ZIP Code input fields. For two-line parsed
last line matching, use the following fields and settings:

• Address input fields = AddressLine, AddressLine2, City, State, and any of the ZIP Code
fields.

The information in these fields may include, but is not limited to: house number, street,
unit number, PO Box, firm name, city and state or ZIP Code. If your data includes
addresses in Puerto Rico, you may also use the UrbanizationName field. If your data
includes addresses in Canada, you may also use the Province, Municipality, and
Postal Code fields.

• Set AddressBroker’s INPUT_MODE property to AB_INPUT_PARSED_LASTLINE.

AddressBroker extracts information from AddressLine and AddressLine2. A
standardized address is returned (when possible) in both the AddressLine and
AddressLine2 output fields. City, State, and ZIP Code address information is standardized
and returned in either the LastLine or the City, State, and ZIP Code output fields.

An example of two-line parsed last line input looks like this:

25 Main (AddressLine)

Ste 200 (AddressLine2)

New York (City)

NY (State)

AddressBroker Reference Manual for Windows 449

AddressBroker returns:

123 Main St Ste 200 (AddressLine)

New York (City)

NY (State)

10044-0052 (ZIP10)

Multiline input mode

Multiline input mode lets you pass up to six address lines as input to AddressBroker. For
multiline input mode, use the following fields and settings:

• Address Input fields: Line1, Line2, Line3, Line4, Line5, Line6 (not all fields are required)
• Set AddressBroker’s INPUT_MODE property to AB_INPUT_MULTILINE.

In multiline input mode, you do not use the LastLine input field for City, State, and ZIP Code data.
AddressBroker extracts information from Line1...6. A standardized address is returned (when
possible) in the AddressLine output field. City, State, and ZIP Code information is standardized and
returned in the LastLine output field. Extraneous (non-address) information is returned in the
Line1... Line6 output fields. The AddressLine2 output field is always empty. For example, given
the input:

Mary Doe (Line1)

25 Main St (Line2)

Suite 200 (Line3)

Deliver around back (Line4)

New York (Line5)

NY (Line6)

AddressBroker returns:

25 Main St Suite 200(AddressLine)

New York, NY, 10044-0052(LastLine)

Mary Doe(Line1)

Deliver around back(Line4)

In this example, the Line2, Line3, Line5, Line6, and AddressLine2 output field values are
empty. You can also use GetField with “parsed” output fields as arguments to retrieve
address elements individually.

Note: GeoStan Canada does not support multiline processing.

AddressBroker Reference Manual for Windows 450

Address preference
Some address entries in your database may contain both a street address and a PO Box.
Use AddressBroker’s ADDRESS_PREFERENCE property to configure AddressBroker to prefer
the PO Box, street, or bottommost address line, when returning a match. Basically,
whichever preference you select is returned in the AddressLine output field, provided the
address was matched. If only one of the addresses matched, the match is returned in the
AddressLine output field, regardless of the value assigned to ADDRESS_PREFERENCE.
AddressBroker’s ADDRESS_PREFERENCE property has no effect when an entry has only one
address (street or PO Box, but not both).

When both addresses match, the fields in which the “non-preferred” address information is
returned depend on the value of ADDRESS_PREFERENCE and the value assigned to INPUT_MODE
(see “Address line input modes” on page 447).

Address preference with two-line input mode

Consider this example address:

25 Main Suite 200(AddressLine)

Box 100(AddressLine2)

New York, NY, 10044(LastLine)

With ADDRESS_PREFERENCE set to prefer a street address, the output field values are:

25 Main St Suite 200(AddressLine)

PO Box 100(AddressLine2)

New York, NY, 10044-0052(LastLine)

Both address lines are valid addresses. Both AddressLine and AddressLine2 have been
standardized. The Lastline field has also been standardized. If you had set
ADDRESS_PREFERENCE to prefer a PO Box, the output field values would be:

PO Box 100(AddressLine)

25 Main Suite 200(AddressLine2)

New York, NY, 10008(LastLine)

Now consider the next example address:

000 Main Suite 200(AddressLine)

Box 100(AddressLine2)

New York, NY(LastLine)

AddressBroker Reference Manual for Windows 451

The information in AddressLine is not a valid address, and does not return a match. The
output field values for this example are:

PO Box 100 (AddressLine)

000 Main Suite 200 (AddressLine2)

New York, NY, 10008 (LastLine)

When only one address matches, it is returned in the AddressLine output field, regardless of
the ADDRESS_PREFERENCE setting. AddressBroker always attempts to return a matched
address rather than no match. In this example, the AddressLine and LastLine output fields
have been standardized. The unmatched address information is returned in the
AddressLine2 output field. It is not standardized.

The first three rows in the following table show what values are returned when two valid
addresses are submitted in an address record for each of the preference modes. The table
below also explains which output fields hold the data and whether or not the data has been
processed.

The second three rows in the table below show what values are returned when two
addresses are submitted, but only one is matched. Two-line input mode:

1. Output field contains a standardized address (when possible).
2. In Multiline matching, setting ADDRESS_PREFERENCE to AB_ADDRESS_BOTTOM causes the address

information in the highest Line1 input field to be returned in the AddressLine output field.

Address preference with two-line parsed last line input mode

ADDRESS_PREFERENCE with INPUT_MODE set to AB_INPUT_PARSED_LASTLINE is the same as
two-line input described in the preceding section.

ADDRESS
PREFERENCE =

input field =
AddressLine

output field =
AddressLine Std.1

input field =
AddressLine2

output field =
AddressLine2 Std.1

AB_ADDRESS_STREET 25 Main 25 Main St Y BOX 100 PO BOX 100 Y

AB_ADDRESS_POBOX 25 Main PO BOX 100 Y BOX 100 25 Main St Y

AB_ADDRESS_BOTTOM2 25 Main 25 Main St Y BOX 100 PO BOX 100 Y

AB_ADDRESS_STREET 000 Main PO BOX 100 Y BOX 100 000 Main N

AB_ADDRESS_POBOX 25 Main 25 Main St Y blank
—or—
BOX 00

blank
—or—
BOX 00

N

AB_ADDRESS_BOTTOM2 000 Main PO BOX 100 Y BOX 100 000 Main N

AddressBroker Reference Manual for Windows 452

Address preference with parsed input mode

When AddressBroker’s INPUT_MODE property is set to AB_INPUT_PARSED, only one address
line can be entered at a time. AddressBroker’s ADDRESS_PREFERENCE property has no effect.

Address preference with multiline input mode

Multiline input mode requires you to use the Line1...6 input fields. When more than one
input field contains a valid address, the preferred, standardized, match is returned in the
AddressLine output field. City, state, and ZIP Code information is returned (standardized) in
the LastLine output field. Any information that is not part of a matched address is returned
in the Line1...6 output fields.

Consider this example address:

25 Main Suite 200(Line1)

Box 100(Line2)

New York(Line3)

NY(Line4)

With ADDRESS_PREFERENCE set to prefer a street address, the output fields hold:

25 Main St Suite 200(AddressLine)

New York, NY, 10044-0052(LastLine)

null(Line1)

Box 100(Line2)

null(Line3)

null(Line4)

In the example above, both addresses are valid, but only the AddressLine and LastLine
output fields are standardized. If you had set ADDRESS_PREFERENCE to prefer a PO Box, the
output would look like this:

PO Box 100(AddressLine)

New York, NY, 10008(LastLine)

25 Main Suite 200(Line1)

null(Line2)

null(Line3)

null(Line4)

AddressBroker Reference Manual for Windows 453

In the next example, only the PO Box is a valid address:

000 Main Suite 200(Line1)

Box 100(Line2)

New York(Line3)

NY(Line4)

When only one address matches, it is returned in the AddressLine output field, regardless of
the ADDRESS_PREFERENCE setting. AddressBroker always attempts to return a matched
address rather than no match. The output field values for this example are:

PO Box 100(AddressLine)

New York, NY, 10008(LastLine)

000 Main Suite 200(Line1)

null(Line2)

null(Line3)

null(Line4)

The first three rows in the table below show what values are returned when two valid
addresses are submitted in an address record for each of the preference modes. This table
also explains which output fields hold the data and whether or not the data has been
processed.

The second three rows below show what values are returned when two addresses are
submitted, but only one is matched. Multiline input mode:

ADDRESS
PREFERENCE =

input field =
Line1 output field = Std1

input field =
Line2 output field = Std.1

AB_ADDRESS_STREET 25 Main AddressLine =
25 Main St
Line1 = blank

Y Box 100 Line2 = Box 100 N

AB_ADDRESS_POBOX 25 Main Line1 = 25 Main N Box 100 AddressLine =
PO Box 100
Line2 = blank

Y

AB_ADDRESS_BOTTOM2 25 Main Line1 = 25 Main N Box 100 AddressLine =
PO Box 100
Line2 = blank

Y

AB_ADDRESS_STREET 000 Main Line1 = 000 Main
(no match)

N Box 100 AddressLine =
PO Box 100
Line2 = blank

Y

AddressBroker Reference Manual for Windows 454

1. Output field contains a standardized address (when possible).
2. In Multiline matching, setting ADDRESS_PREFERENCE to AB_ADDRESS_BOTTOM causes the address

information in the highest Line1 input field to be returned in the AddressLine output field.

USPS enhanced line-of-travel (eLOT) codes

eLOT codes are alphanumeric codes based on the ZIP + 4 and Carrier Route of an
address. eLOT codes signify the approximate order in which the postal carrier delivers mail.
These codes are generally used to qualify for greater bulk mail discounts. To retrieve eLOT
codes, you must input standardizable addresses; ZIP and ZIP + 4 Codes alone are not
sufficient.

eLOT code information is stored in Us.gsl, shipped on the Data Products Suite, Disc B.
Include the path to this file in AddressBroker’s GEOSTAN_PATHS property to access this
feature.

Your license file controls access to the eLOT codes file. To upgrade your license to include
eLOT codes, contact Precisely.

AB_ADDRESS_POBOX 25 Main AddressLine =
25 Main St
Line1 = blank

Y blank
—or—
Box 00

Line2 = blank
—or—
Box 00 (no match)

N

AB_ADDRESS_BOTTOM2 25 Main AddressLine =
25 Main St
Line1 = blank

Y blank
—or—
Box 00

Line2 = blank
—or—
Box 00 (no match)

N

ADDRESS
PREFERENCE =

input field =
Line1 output field = Std1

input field =
Line2 output field = Std.1

B – Early Warning System
Data

AddressBroker Reference Manual for Windows 456

Early Warning System (EWS) data is a free data file the USPS provides to prevent matching
errors due to the age of the address data in the Use.gsd and Usw.gsd files.

You can use the Use.gsd and Usw.gsd files that Precisely provides on the Centrus® Data
Products Suite DVDs or Internet download for 135 days. However, during that time, the USPS
may add new addresses to the Address Management System (AMS), from which the USPS
address data is extracted. Precisely then adds this new data to the Use.gsd and Usw.gsd file.
However, any new addresses activated after the creation of the Use.gsd and Usw.gsd files are
not accessible by your Centrus products until you receive and install new data. Therefore, new
addresses may be matched to a record in the current Use.gsd and Usw.gsd files that may not be
the best match when the updated USPS address information is used, or the address may not
match a record at all.

The USPS creates the EWS data set by examining their address database for new records that
could match incorrectly to an existing record, and for addresses not present in the most recent
USPS data product. The USPS creates a new EWS data set for download each week. See the
Release Notes for the Centrus Data Products for information about downloading and installing
the EWS data set.

By downloading the new EWS data on a regular basis, you can ensure more accurate address
matching and standardization. If the EWS data file is present, you receive match code E028 if an
input address matches to a record in the EWS data and no match is made.

C – USPS Link products

In this appendix

This appendix provides information on Delivery Point Validation (DPV),
Locatable Address Conversion System process (LACSLink), SuiteLink ,
and Residential Delivery Indicator (RDI) available with this Precisely
product, and includes the following topics:

Implementing LACSLink and DPV 462
False positive report example code 462
Reporting a false positive address 468
Understanding SuiteLINK for secondary numbers 469

Note: GeoStan requires the DPV and LACSLink options in CASS mode
to receive ZIP + 4 and ZIP + 4 related output (DPBC, USPS
record type, etc.,). GeoStan also requires the DPV SuiteLink, and
LACSLink options to produce a CASS form PS 3553.

AddressBroker Reference Manual for Windows 458

DPV overview

Delivery Point Validation (DPV™) is a United States Postal Service (USPS®) technology that
validates the accuracy of address information down to the physical delivery point. DPV is
only available through a CASS-certified vendor, such as Precisely.

Previous address-matching software could only validate that an address fell within the low-
to-high address range for the named street. By incorporating the DPV technology, you can
resolve multiple matches and determine if the actual address exists. Using DPV reduces
undeliverable-as-addressed (UAA) mail that results from inaccurate addresses, reducing
postage costs and other business costs associated with inaccurate address information.

DPV also provides unique address attributes to help produce more targeted mailing lists.
For example, DPV can indicate if a location is vacant and can identify commercial mail
receiving agencies (CMRAs) and private mail boxes.

Although DPV can validate the accuracy of an existing address, you cannot use DPV to
create address lists. DPV is a secure dataset of USPS addresses. For example, you can
validate that 123 Elm Street Apartment 6 exists, but you cannot ask who lives in Apartment
6 or if there is an Apartment 7 at the same street address.

With DPV, your application automatically processes every ZIP+4 coded record against the
DPV files. Using DPV may increase your ZIP+4 match rate, but may also increase
processing time. Therefore, you may not wish to use DPV if you are not CASS certifying.

AddressBroker Reference Manual for Windows 459

LACSLink overview

The Locatable Address Conversion System (LACS) converts rural addresses to city-style
addressees. LACSLink is a USPS technology that provides mailers with an automated
process to correct address lists for areas that have undergone LACS processing. Address
list conversions occur when the LACS process modifies, changes, or replaces an address.
This usually occurs due to one of the following: the conversion of rural routes and box
numbers to city-style addresses, the renaming or renumbering of existing city-style
addresses to avoid duplication, or the establishment of new delivery addresses.

LACSLink is a secure dataset of USPS addresses. Although LACSLink can validate the
accuracy of an existing address, you cannot use LACSLink to create address lists.

Note: LACSLink is not run in multiple match searches.

False positive addresses overview

False positive addresses, also known as seed records, are addressees the USPS monitors
to ensure users are not attempting to create a mailing list from the DPV or LACSLink data.

Note: Per the USPS regulations, Precisely must contact the USPS with the name and
address of the organization for every false positive address encountered. If multiple
incidents of artificial address detection occurs, the USPS may ask Precisely to
suspend a customer’s DPV or LACSLink processing capability.

If you encounter a false positive, you will receive a message. Processing continues to the
end of your job, but further DPV or LACSLink processing is disabled. DPV or LACSLink
processing is not available for subsequent jobs until you have reported the false-positive
address encounter to Precisely and have received a new security key.

A message similar to the following appears when you encounter a false positive address:

DPV DPV processing was terminated due to the detection of what is determined to be
an artificially created address. No address beyond this point has been DPV
validated. In Accordance with the License Agreement between USPS and
Precisely, DPV shall be used to validate legitimately obtained addresses only,
and shall not be used for the purpose of artificially creating address lists. The
written Agreement between Precisely and the Precisely customer shall also
include the same restriction against using DPV to artificially create address lists.
Continuing use of DPV requires compliance with all terms of the License
Agreement. If you believe this address was identified in error, please contact
Precisely.

LACS/Link LACS/Link processing was terminated due to the LACS/Link DEVELOPER
LICENSEE PERFORMANCE REQUIREMENTS detection of what is determined
to be an artificially created address. No address beyond this point has been
LACS/Link processed. In accordance with the License Agreement between
USPS and Precisely, LACS/Link shall be used to convert legitimately obtained
addresses only, and shall not be used for the purpose of artificially creating
address lists. The written Agreement between Precisely and the Precisely
customer shall also include this same restriction against using LACS/Link to
artificially create address lists. Continuing use of LACS/Link requires compliance
with all terms of the License Agreement. If you believe this address was identified
in error, please contact Precisely.

AddressBroker Reference Manual for Windows 460

When implementing DPV and LACSLink you need to create a false positive file that contains
the Header Record and Detail Record information. You must provide this file to obtain a new
security file from Precisely Technical Support.

For information purposes, the following tables contain the layout of the header and detail
records of the false positive files for DPV and LACSLink. The header record contains the
mailer information from the Mailer Parameter Record and statistics gathered by the
application.

Note: Positions 156-180 in the previous table do not exist in the LACSLink false-positive
header record.

The detail record contains false positive record information.

Position Length Description Format

1-40 40 Company name alphanumeric

41-98 58 Address line alphanumeric

99-126 28 City name alphanumeric

127-128 2 State abbreviation alphabetical

129-137 9 9-digit ZIP code numeric

138-146 9 Total records DPV/LACSLink
processed

numeric

147-155 9 Total records DPV/LACSLink matched numeric

156-164 9 % match rate to DPV numeric

165-173 9 % match rate to ZIP+4 numeric

174-178 5 Number of ZIP codes on file numeric

179-180 2 Number of false-positives numeric

Position Length Description Format

1-2 2 Street pre-directional alphanumeric

3-30 28 Street name alphanumeric

31-34 4 Street suffix abbreviation alphanumeric

35-36 2 Street post-directional alphanumeric

37-46 10 Address primary number alphanumeric

47-50 4 Address secondary abbreviation alphanumeric

51-58 8 Address secondary number numeric

59-63 5 Matched ZIP code numeric

AddressBroker Reference Manual for Windows 461

Data expiration

The USPS has determined that the ZIP+4 Directory data, DPV data, and LACSLink data
expire in 105 days for CASS processing. The date is measured from the release of the
Postal database, which is the 15th of the month indicated on the Precisely data CD. For
example, the June data release is good for 105 days from the 15th of June. However, in
non-CASS processing modes, ZIP+4 data expires in 135 days.

RDI overview

The Residential Delivery Indicator (RDI™) is a United States Postal Service (USPS®) data
product that identifies whether a delivery type is classified as residential or business. If you
are shipping to residences, you may lower costs by shipping with the Postal Service™ and
avoid residential delivery surcharges typically charged by other shipping companies.

Note: To use RDI, DPV must also be initialized.

64-67 4 Matched ZIP+4 numeric

68-180 113 Filler

Position Length Description Format

AddressBroker Reference Manual for Windows 462

Implementing LACSLink and DPV
LACSLink and DPV processing utilizes additional data. Precisely provides this data on
separate CDs from the traditional GeoStan data, and is dependent on your contract with
Precisely. For more information on installing DPV and LACSLinkdata, see the DPV and
LACS/Link Release Notes.

Note: DPV and LACSLink are optional when processing records in CASS mode. However,
you must use DPV and LACSLink data for CASS certification.

When you implement DPV and LACSLink you must first initialize GeoStan. After you have
initialized GeoStan, you can initialize DPV and LACSLink.

If you initialize DPV, GeoStan automatically uses DPV to resolve match candidatees. DPV
will not delivery point validate unless you specifically request DPV output. If you do not
specifically request DPV output DPV will never hit a false-positive address.

If you initialize LACSLink, GeoStan automatically uses LACSLink to convert addresses
according to the guidelines created by the USPS.

False positive report example code

The following code is an example of how to implement DPV and LACSLink false positive
reporting using the C language:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define GEOSTAN_PROPERTIES
#include "geostan.h"
int
main(int argc, pstr * argv)
{

 GsId gs;
 GsFunStat retcode;
 char buffer[GS_MAX_STR_LEN];
 char buffer2[GS_MAX_STR_LEN];
 FILE * DPVfalsPosOut; /* DPV false positive file pointer */
 FILE * LACSfalsPosOut; /* LACSLink false positive file pointer */
 GsFalsePosHeaderData FPheaderData; /* DPV/LACSLink false positive
 header record */
 GsFalsePosDetailData FPdetailData; /* DPV/LACSLink false positive
 detail record */
 char * mailerName = "PRECISELY";
 char * mailerAddress = "4750 WALNUT ST STE 200";
 char * mailerCity = "BOULDER";
 char * mailerState = "CO";
 char * mailerZip = "803012532";

 PropList initProps;

AddressBroker Reference Manual for Windows 463

 PropList statusProps;
 PropList findProps;
 qbool bVal;

 GsPropListCreate(&initProps, GS_INIT_PROP_LIST_TYPE);

 // Replace paths and keys with your installation
 GsPropSetStr(&initProps, GS_INIT_DPV_SECURITYKEY,
 "1237-5678-9abc-def0");
 GsPropSetStr(&initProps, GS_INIT_DPV_DIRECTORY,
 "C:\\Program Files\\Centrus\\Datasets\\Current");
 GsPropSetLong(&initProps, GS_INIT_DPV_DATA_ACCESS,
 DPV_DATA_FULL_FILEIO);
 GsPropSetBool(&initProps, GS_INIT_DPV, TRUE);
 GsPropSetStr(&initProps, GS_INIT_LACSLINK_SECURITY_KEY,
 "1237-5678-9abc-def0");
 GsPropSetStr(&initProps, GS_INIT_LACSLINK_DIRECTORY,
 "C:\\Program Files\\Centrus\\Datasets\\Current");
 GsPropSetBool(&initProps, GS_INIT_LACSLINK, TRUE);
 GsPropSetStr(&initProps, GS_INIT_SUITELINK_DIRECTORY,
 "C:\\Program Files\\Centrus\\Datasets\\Current");
 GsPropSetBool(&initProps, GS_INIT_SUITELINK, TRUE);
 GsPropSetLong(&initProps, GS_INIT_GSVERSION,
 GS_GEOSTAN_VERSION);
 GsPropSetBool(&initProps, GS_INIT_OPTIONS_ADDR_CODE, TRUE);
 GsPropSetBool(&initProps, GS_INIT_OPTIONS_Z9_CODE, TRUE);
 GsPropSetStr(&initProps, GS_INIT_DATAPATH,
 "C:\\Program Files\\Centrus\\Datasets\\Current");
 GsPropSetStr(&initProps, GS_INIT_Z4FILE,
 "C:\\Program Files\\Centrus\\Datasets\\Current\\us.z9");
 GsPropSetLong(&initProps, GS_INIT_PASSWORD, 12345678);
 GsPropSetLong(&initProps, GS_INIT_CACHESIZE, 2);
 GsPropSetStr(&initProps, GS_INIT_LICFILENAME,
 "C:\\Program Files\\Centrus\\Geolib\\Geostan.lic");

 GsPropListWrite(&initProps, "stdout", NULL, 0);
 GsPropListCreate(&statusProps, GS_STATUS_PROP_LIST_TYPE);

 /* initialize GeoStan */
 gs = GsInitWithProps(&initProps, &statusProps);
 GsPropListWrite(&statusProps, "stdout", 0, 0);
 while (GsErrorHas(gs))
 {

 GsErrorGetEx (gs, buffer, buffer2);
 printf ("%s\n%s\n", buffer, buffer2);
 }

 if (gs == 0)
 {

 printf("GeoStan failed to initialize.\n");
 exit(1);
 }

 // Verify DPV loaded correctly
 retcode = GsPropGetBool(&statusProps,
 GS_STATUS_DPV_FILE_SECURITY, &bVal);
 if (GS_SUCCESS == retcode)
 {

AddressBroker Reference Manual for Windows 464

 if (!bVal)
 {
 printf("DPV security key failed to verify.\n");
 }
 else if (GS_SUCCESS == GsPropGetBool(&statusProps,
 GS_STATUS_DPV_FILE_ALL, &bVal))
 {
 if (!bVal)
 printf("DPV data failed to initialize.\n");
 }

 }

 retcode = GsPropGetBool(&statusProps,
 GS_STATUS_LACSLINK_FILE_SECUR, &bVal);
 if (GS_SUCCESS == retcode)
 {
 if (!bVal)
 {
 printf("LACSLink security key failed to verify.\n");
 }
 else if (GS_SUCCESS == GsPropGetBool(&statusProps,
 GS_STATUS_LACSLINK_FILE_ALL, &bVal))
 {
 if (!bVal)
 printf("LACSLink data failed to initialize.\n");
 }

 }

 retcode = GsPropGetBool(&statusProps,
 GS_STATUS_SUITELINK_FILE_ALL, &bVal);
 if (GS_SUCCESS == retcode)
 {
 if (!bVal)

 printf("SuiteLink data failed to initialize.\n");
 }

 GsPropListCreate(&findProps, GS_FIND_PROP_LIST_TYPE);
 GsPropSetBool(&findProps, GS_FIND_ADDRCODE, TRUE);
 GsPropSetBool(&findProps, GS_FIND_Z9_CODE, TRUE);
 GsPropSetBool(&findProps, GS_FIND_FINANCE_SEARCH, TRUE);
 GsPropSetLong(&findProps, GS_FIND_MATCH_MODE, GS_MODE_CASS);

 GsClear(gs);
 GsDataSet(gs, GS_FIRM_NAME, "DIXIES DAISYS FLOWER SERVICE");
 GsDataSet(gs, GS_ADDRLINE, "74203 PERRANIA");
 GsDataSet(gs, GS_LASTLINE, "GRANT CO 80448");
 retcode = GsFindWithProps(gs, &findProps);

 GsPropListWrite(&findProps, "stdout", 0, 0);
 while (GsErrorHas(gs))
 {

 GsErrorGetEx (gs, buffer, buffer2);

AddressBroker Reference Manual for Windows 465

 printf ("%s\n%s\n", buffer, buffer2);
 }

 GsDataGet(gs, GS_OUTPUT, GS_DPV_FALSE_POS, buffer,
 sizeof(buffer));
 if (*buffer == 'Y')
 {

 /*
 A DPV false positive occurred.
 Write a false positive report
 */
 DPVfalsPosOut = fopen("DPVfalsePos.rpt", "w");
 if (DPVfalsPosOut)
 {

 /* Get the false positive header data */
 memset(&FPheaderData, 0, sizeof(FPheaderData));
 strcpy(FPheaderData.MailersCompanyName, mailerName);
 strcpy(FPheaderData.MailersAddressLine, mailerAddress);
 strcpy(FPheaderData.MailersCityName, mailerCity);
 strcpy(FPheaderData.MailersStateName, mailerState);
 strcpy(FPheaderData.Mailers9DigitZip, mailerZip);
 GsDpvGetFalsePosHeaderStats(gs, &FPheaderData,
 sizeof(FPheaderData));
 /* Format the false positive header data */
 retcode = GsFormatDpvFalsePosHeader(gs,&FPheaderData,
 sizeof(FPheaderData), buffer, sizeof(buffer));
 /* Write the header to the false positive file */
 if (retcode == GS_SUCCESS)
 {

 fprintf(DPVfalsPosOut,"%s\n", buffer);
 }
 else
 {

 GsErrorGetEx(gs, buffer, buffer2);
 printf("Error calling GsFormatDpvFalsePosHeader:"
 "\n%s\n%s\n", buffer, buffer2);
 }

 /* Get the false positive detail data */
 retcode = GsDpvGetFalsePosDetail(gs, &FPdetailData,
 sizeof(FPdetailData));
 if (retcode != GS_SUCCESS)
 {

 GsErrorGetEx(gs, buffer, buffer2);
 printf("Error calling GsDpvGetFalsePosDetail:"
 "\n%s\n%s\n",
 buffer, buffer2);
 }

 /* Format the false positive detail data */
 retcode = GsFormatDpvFalsePosDetail(gs, &FPdetailData,
 sizeof(FPdetailData), buffer, sizeof(buffer));
 /* Write the detail to the false positive file */
 if (retcode == GS_SUCCESS)
 {

AddressBroker Reference Manual for Windows 466

 fprintf(DPVfalsPosOut,"%s\n", buffer);
 }
 else
 {
 GsErrorGetEx(gs, buffer, buffer2);
 printf("Error calling GsFormatDpvFalsePosDetail:"
 "\n%s\n%s\n",
 buffer, buffer2);
 }

 fclose(DPVfalsPosOut);
 }
 else
 {

 printf("Failed to open DPV false positive file "
 "(errno =%d).\n", errno);
 }

 }

 GsClear(gs);
 GsDataSet(gs, GS_ADDRLINE, "RR 1 BOX 6300");
 GsDataSet(gs, GS_LASTLINE, "MOUNT SIDNEY VA 24467");
 retcode = GsFindWithProps(gs, &findProps);

 GsDataGet(gs, GS_OUTPUT, GS_LACSLINK_IND, buffer,
 sizeof(buffer));
 if (*buffer == 'F')
 {

 /*
 A LACSLink false positive occurred.
 Write a false positive report */
 LACSfalsPosOut = fopen("LACSfalsePos.rpt", "w");
 if (LACSfalsPosOut)
 {

 /* Get the false positive header data */
 memset(&FPheaderData, 0, sizeof(FPheaderData));
 strcpy(FPheaderData.MailersCompanyName, mailerName);
 strcpy(FPheaderData.MailersAddressLine, mailerAddress);
 strcpy(FPheaderData.MailersCityName, mailerCity);
 strcpy(FPheaderData.MailersStateName, mailerState);
 strcpy(FPheaderData.Mailers9DigitZip, mailerZip);
 GsLACSGetFalsePosHeaderStats(gs, &FPheaderData,
 sizeof(FPheaderData));
 /* Format the false positive header data */
 retcode = GsFormatLACSFalsePosHeader(gs, &FPheaderData,
 sizeof(FPheaderData), buffer,
 sizeof(buffer));
 /* Write the header to the false positive file */
 if (retcode == GS_SUCCESS)
 {

 fprintf(LACSfalsPosOut,"%s\n", buffer);
 }
 else

AddressBroker Reference Manual for Windows 467

 {

 GsErrorGetEx(gs, buffer, buffer2);
 printf("Error calling GsFormatLACSFalsePosHeader:"
 "\n%s\n%s\n", buffer,
 buffer2);
 }

 /* Get the false positive detail data */
 retcode = GsLACSGetFalsePosDetail(gs, &FPdetailData,
 sizeof(FPdetailData));
 if (retcode != GS_SUCCESS)
 {

 GsErrorGetEx(gs, buffer, buffer2);
 printf("Error calling GsLACSGetFalsePosDetail:"
 "\n%s\n%s\n", buffer,
 buffer2);
 }

 /* Format the false positive detail data */
 retcode = GsFormatLACSFalsePosDetail(gs, &FPdetailData,
 sizeof(FPdetailData), buffer, sizeof(buffer));
 /* Write the detail to the false positive file */
 if (retcode == GS_SUCCESS)
 {

 fprintf(LACSfalsPosOut,"%s\n", buffer);
 }
 else
 {

 GsErrorGetEx(gs, buffer, buffer2);
 printf("Error calling GsFormatDpvFalsePosDetail:"
 "\n%s\n%s\n", buffer,
 buffer2);
 }

 fclose(LACSfalsPosOut);
 }
 else
 {

 printf("Failed to open LACSLink false positive file"
 " (errno =%d).\n", errno);
 }

 }

 GsTerm(gs);
 GsPropListDestroy(&findProps);
 GsPropListDestroy(&initProps);
 GsPropListDestroy(&statusProps);

 return 0;
}

AddressBroker Reference Manual for Windows 468

Reporting a false positive address
You report false positive address matches and obtain a new security key in the same
manner for both DPV and LACSLink. You must provide the false positive report file to
Precisely to obtain a replacement security key.

To report a false positive address match and obtain a new security key:

1. Go to Precisely Support at https://support.precisely.com/.

2. Log into the site, by entering your user ID and password.

Note: If you do not know your user ID and password, select the Need Your User ID or
Password link. Enter your email address as instructed. Preciselywill email the
user ID and password if your email address exactly matches the email in the
Precisely customer database.

3. Click My Products from the column on the left of the Precisely Support site. A screen
appears with a listing of all of your Precisely software products.

4. Click on the appropriate product name. A screen appears with the platforms available
for the product.

5. Select View Details from the right-most column. A screen appears with detailed
information for the platform.

6. Select Download DPV or Download LACSLink in the Database section. A window
appears asking you for specific information.

7. Enter your old license key and attach your false-positive file by clicking the Browse
button.

8. When prompted, save the file that contains the new security key to your machine.

You can now use the new security key located in the file you downloaded from the
Precisely Support site when prompted by your application.

If you need assistance, open a Support case at
https://support.precisely.com/casemanagement. Have your false-positive file ready to
provide to the Precisely representative.

https://support.precisely.com/
https://support.precisely.com/casemanagement

AddressBroker Reference Manual for Windows 469

Understanding SuiteLINK for secondary numbers
The purpose of SuiteLink™ is to improve business addressing by adding known secondary
(suite) numbers to allow delivery sequencing where it would otherwise not be possible.
SuiteLink uses the input business name, street number location, and 9 digit ZIP+4 to return
a unit descriptor (i.e. "STE") and unit number for that business.

As an example, when entering the following address with SuiteLink enabled in CASS mode:

UT Animal Research

910 Madison Ave

Memphis TN 38103

GeoStan returns the following:

UT Animal Research

910 Madison Ave STE 823

Memphis TN 38103

Or

UT Animal Research

910 Madison Ave #823

Memphis TN 38103

If you have licensed the SuiteLink processing option, you must install the SuiteLink data and
set the SuiteLink initialization properties for GeoStan to process your address through
SuiteLink. For more information on SuiteLink enums and functions, see the following sections:

• “Enums for storing and retrieving data” on page 96 for C and page 279 for COBOL.
• GsFindWithProps properties

SuiteLink is required for CASS certification.

AddressBroker Reference Manual for Windows 470

D – User-defined Data Files

In this appendix

This chapter discusses using auxiliary files and User Dictionaries.

User Dictionary 472
Auxiliary files 479

AddressBroker Reference Manual for Windows 472

User Dictionary
This section includes information on creating User Dictionaries, source data requirements
and required fields, and other information specific to working with User Dictionaries.

Note: User Dictionaries are not for use with CASS geocoding or reverse geocoding.

Understanding User Dictionary capabilities and requirements

The capabilities of User Dictionaries and the basic requirements for creating them are as
follows.

• All fields supported by normal street geocoding can be included in User Dictionaries.
• Landmarks and place names are supported in User Dictionaries. Postal or geographic

centroid geocoding are not supported in User Dictionaries.
• User Dictionaries support address browsing using partial street names or landmarks

and place names.
• GSDs are necessary to create the User Dictionary. This is because the GSDs have

some internal structure that must be available when creating a User Dictionary.

The results from a User Dictionary are similar to that from the GSD. For address
matches where the first letter of the match code would be 'S', a User Dictionary match
has the letter 'J'. The value of the RecordType is 'U'. Also, the enum DataType returns a
new value for the User Dictionary record matches.

For example: SE9 is a match code for a match that comes from a GSD, while JE9 is for
a match that comes from a User Dictionary. See GeoStan location codes for a complete
description of match codes.

Source data requirements

The source data for User Dictionaries includes street data but can also include place
names and intersections.

To create a User Dictionary, your source data must conform to the following
requirements:

• Source records must include required fields, and these fields are mapped during the
User Dictionary creation process. If a value of a required field is empty for a particular
record, then that record will not be imported into the User Dictionary. Required fields
may vary for different countries. The MapInfo table must contain specific fields, which
GeoStan then uses to convert the table into the dictionary format. These input fields are
described in Required Input Fields on page.

• Source records must be in a MapInfo table (TAB file). The TAB file requirements vary for
different countries.

AddressBroker Reference Manual for Windows 473

• Segments must have two or more defined endpoints to be loaded into a User Dictionary.
Segments without endpoints are ignored.

• Segments that make up intersections must have one or more end points in the
intersection for GeoStan to recognize it as an intersection. Source records can be either
point objects or segments.

• Each row in the table is equivalent to a street segment.

Required input fields

You must specify the field names in the MapInfo table (TAB file) in order for the table to
be translated into a User Dictionary. Certain fields are required and must be present in
the MapInfo table. Other fields are optional, but are strongly recommended because
there may be negative consequences if they are omitted. This is described in Optional
(Recommended) Input Fields on page Optional (recommended) input fields. If any of
the required fields are missing, a missing field error code is returned.

The following table describes the required input fields.

Optional (recommended) input fields

The Left and Right Odd/Even Indicator fields are used to specify whether the sides of
the street segment contain odd or even address ranges. Although these indicators are
not required for creating a User Dictionary, it is important to use the Odd/Even
Indicators when your data contains odd/even address numbers.

When the Odd/Even Indicator is specified, but is inconsistent with address numbers,
the indicator is set to Both.

When the Odd/Even Indicator is not specified and both Start Address and End Address
have values, the indicator is set to Both, unless the start and end address numbers are
the same number. In that case, the indicator is set to Odd if the address numbers are
odd, and set to Even if the address numbers are even.

Required fields Description
Maximum field
length

Left start address Start of address range on left side of street. 10

Right start address Start of address range on right side of street. 10

Left end address End of address range on left side of street. 10

Right end address End of address range on right side of street. 10

Street name Name of street. 30

State abbreviation Two-character state abbreviation. 2

Left ZIP Code ZIP Code for left side of street. 5

Right ZIP Code ZIP Code for the right side of the street. 5

AddressBroker Reference Manual for Windows 474

When the Odd/Even Indicator is not specified and both Start Address and End Address
have values, the indicator is set to Both (odd and even).

Note: If your table contains Odd/Even indicator information, we strongly recommend that
you use the Odd/Even indicator fields. These fields ensure that your geocoded
addresses are located on the correct side of the street. Omitting the fields when your
data contains Odd/Even information may produce incorrect results.

The following table describes the optional input fields.

* These fields are highly recommended.

User Dictionary file names and formats

GeoStan has some requirements for User Dictionary files that you must be aware of
before you create a User Dictionary:

• Each User Dictionary has a base name of eight characters or fewer.
• Each User Dictionary resides in its own directory.
• The maximum length of a path to a User Dictionary is 1024 characters.
• The ZIP Code range in the MapInfo table for a User Dictionary is unlimited.

Because each User Dictionary resides in its own directory, User Dictionaries may share
the same name. However, it is generally good practice to use a unique name for each
User Dictionary.

Some of the output files are tied to the base name. The other output files have constant
names. For example, the output files for a dictionary called ud1 are the following:

Optional fields Description
Maximum field
length

Left Odd/Even indicator* Left side of the street contains only odd
or even address ranges (O=odd,
E=even, B=both)

1

Right Odd/Even indicator* Right side of the street contains only
odd or even address ranges (O=odd,
E=even, B=both)

1

City* City name 28

Left ZIP + 4 Code 4-digit ZIP + 4 add-on for left side of
street.

4

Right ZIP + 4 Code 4-digit ZIP + 4 add-on for right side of
street.

4

Left Census Block Census Block ID for left side of street 15

Right Census Block Census Block ID for right side of street 15

Place Name Place name 40

AddressBroker Reference Manual for Windows 475

postinfo.jdr
postinfo.jdx
lastline.jdr
post2sac.mmj
geo2sac.mmj
sac2fn_ud.mmj
ud1.jdr
ud1.jdx
ud1.bdx

If your data includes place names, the dictionary contains the following files:

ud1.pdx
ud1.pbx

The dictionary also contains these log files:

ud1.log
ud1.err

Additional User Dictionary considerations

See the following topics for more information when working with User Dictionaries.

Data Access License

You must still have a valid access license to the data contained in the GSD when you
are geocoding against your User Dictionary. For example, if you create a dictionary of
New York streets and addresses, you must purchase the New York or entire U.S. GSD.

Use without GSD data files

To utilize a User Dictionary without the use of GSDs, the files listed below are required:

• ctyst.dir - The USPS City State table.
• parse.dir - The GeoStan dictionary

To perform postal centroid geocoding, in addition to a GSD or a User Dictionary and the
files listed above, the following files are necessary:

• us.z9 - Postal centroid information.
• cbsac.dir - Required only if county names or CBSA/CSA data are needed.

CASS standards

You cannot geocode to CASS standards using a User Dictionary. This also means that
the ParcelPrecision Dictionary cannot be used during CASS geocoding.

AddressBroker Reference Manual for Windows 476

Address range order

GeoStan determines the order of the address range based on a comparison of the start
and end addresses. The comparison produces the following results:

• If the end is greater than the start, the range is ascending.
• If the start is greater than the end, the range is descending.
• If the start is equal to the end, the range is ascending.

Street intersections and User Dictionaries

When geocoding to street intersections with a User Dictionary, GeoStan cannot
recognize the intersections if one or more of the segments that make up the intersection
does not have an end point at the intersection. This can happen when you create the
User Dictionary from a customized street table in which some segments that terminate
at intersections do not have end points (Example 1).

Example 1: Intersection in User Dictionary does not have end points for all segments.
GeoStan does not recognize this as an intersection.

Example 2: Intersection in TIGER-based GSD includes end points for all segments.
GeoStan geocodes to this intersection.

AddressBroker Reference Manual for Windows 477

City lookup

GeoStan relies on USPS data to determine addresses. If a new address was input, it
might not have been recognized despite the address being valid if it was not yet valid
according to the USPS. An example of an input address that would not match against
a UD:

1 Second Street
Stickville, NY 11111

In this example, the city is fictitious and the zip is made up. This would fail to match even
with a UD record having that city and that zip, because they are not found in the USPS
data. But a user may possess a UD with such a city and zip.

When matching to a UD record, GeoStan, if necessary, corrects the city name and/or
zip code to the data that is in the UD record. GeoStan is now able to obtain matches for
non-USPS cities and zips that were prevented from succeeding or which required
temporary workarounds.

Using User Dictionaries with address point interpolation

An important part of the process of creating a User Dictionary is to specify a mapping
of fields from your source data. See the MapInfo User Dictionary Utility Product Guide,
for a complete discussion. There are two main categories of data fields: required and
optional.

Of the optional fields, there are two that have an impact on the address point
interpolation feature. These are the "Left Odd/Even" and "Right Odd/Even" fields. If
these are not populated, the results from address point interpolation is less accurate.

Please be aware that aforementioned fields are not populated by source data obtained
via MapInfo StreetPro. You must modify the source TAB file by adding the "Left
Odd/Even" and "Right Odd/Even" indicator fields, and create queries to populate them.
Source data obtained from other products, or your own data, may have similar issues.

To add the "Left Odd/Even" and "Right Odd/Even" indicator fields to a source TAB file,
you must add them and then run a series of SQL update queries to populate them. The
fields should be filled in with “O” (odd), “E” (even), or “B” (both). Below are the steps for
adding these fields:

1. Add two 1-char columns to your TAB file.

Naming each column, for example, Ind_Right and Ind_Left.

2. Perform the following updates to populate these fields:

AddressBroker Reference Manual for Windows 478

• Update <tablename>

Set Ind_Left="E", Ind_Right="O"

Where From_Left mod 2=0 AND To_Left mod 2=0

• Update <tablename>

Set Ind_Left="O", Ind_Right="E"

Where From_Left mod 2=1 AND To_Left mod 2=1

• Update <tablename>

Set Ind_Left="B", Ind_Right="B"

Where From_Left="" AND To_Left=""

Note: These example queries are simplified for illustrative purposes. Your actual
queries may need to be more complex.

AddressBroker Reference Manual for Windows 479

Auxiliary files
This chapter contains information about the GeoStan Auxiliary files feature, and
includes the following topics:

• Auxiliary file matching overview
• Auxiliary file requirements
• Auxiliary file layout

Auxiliary file matching overview

Although Precisely provides robust data for you to match your input address lists
against, in some cases you may want to match your address lists against speciality
data. GeoStan provides you with the ability to create auxiliary files for these instances.

Creating your auxiliary files

You can create customized auxiliary files that contain records that meet your particular
needs to use in GeoStan when matching address lists. This section contains
information on creating auxiliary files, and contains the following topics:

• Auxiliary file requirements
• Record types
• Auxiliary file organization
• Default values

Auxiliary file requirements

GeoStan requires that the auxiliary file comply with the following:

• File must be a comma delimited, fixed width text file
– On Windows and Unix, each record must be ASCII
– On MVS, each record must be in EBCDIC
– On VMS, the file name must be specified with the DDNAME and end in a

number
• File must be less than 2 GB
• File must have a .gax extension
• File must have less than 500,000 records
• File must follow the column field order and lengths specified in “Auxiliary file layout”

on page 484

AddressBroker Reference Manual for Windows 480

Record types

There are two types of auxiliary file records:

• Street Records
A street record contains a range of one or more addresses on a street. To be a valid
street record the record must have the following fields:
– ZIP Code
– Street name
– Street type abbreviation, if part of the address
– Pre-directional abbreviation, if part of the address
– Post-directional abbreviation, if part of the address
– Low house number within the street segment
– High house number within the street segment
– Beginning longitude of the street segment
– Beginning latitude of the street segment

In addition, a street record must NOT have:

– Unit numbers
– Mailstops
– Private mail boxes (PMBs)

• Landmark Records
A landmark record represents a single site. To be a valid landmark record the record
must have the following fields:
– ZIP Code
– Street name containing the name of the landmark
– Beginning latitude of the street segment
– Beginning longitude of the street segment

In addition, a landmark record must NOT have the following fields:

– Street type abbreviation
– Pre-directional abbreviation
– Post-directional abbreviation
– Low house number
– High house number

GeoStan ignores any record that does not comply with the preceding requirements.

Auxiliary file organization

You must comply with the following organizational rules when creating your auxiliary
file.

• The first row of the auxiliary file must be the column field names.

AddressBroker Reference Manual for Windows 481

• Use semicolons in the first column to indicate a row is a comment, not a record.
GeoStan ignores rows that begin with a semicolon.

• Order the records within the file by descending ZIP Code then descending street
name for optimal performance.

• All records must represent only one side of a street. To represent both sides of a
street, you must create a record for each side of the street.

• All records must represent segments that are straight lines. Records cannot
represent a non-straight segment.

• If house numbers are present in the record, the house number range must be valid
according to USPS rules documented in Publication 28, Appendix E.

• The numeric fields, such as ZIP Codes, must contain all numbers.

Default values

GeoStan uses the following defaults if you do not include the values in the auxiliary file:

• House number parity = B (both left and right)
• Segment direction = A (ascending)
• Side of street = U (unknown)

Matching to auxiliary files

This section provides information on the matching performed by GeoStan to auxiliary
files, and contains the following topics:

• Matching overview
• Record type matching rules
• Unavailable GeoStan features and functions
• Auxiliary match output

Matching overview

GeoStan performs the following steps when matching an input address to an auxiliary
file:

1. GeoStan determines if there is an auxiliary file present.

GeoStan only accepts one auxiliary file. If more than one auxiliary files is present,
GeoStan attempts to match against the first file. GeoStan ignores any additional
auxiliary files for matching, regardless if Geostan found a match to the first auxiliary file.

If a record within the auxiliary files is invalid, GeoStan returns a message indicating the
auxiliary file has an invalid record. GeoStan continues to process input addresses
against the auxiliary file, but will not match to the invalid auxiliary file record.

AddressBroker Reference Manual for Windows 482

2. If an auxiliary file is present, GeoStan first attempts to match to the auxiliary file.

GeoStan assumes that the auxiliary file is the most accurate data set and first attempts
to find a match to the input address in the auxiliary file. If GeoStan cannot find a match
in the auxiliary file, it continues to process as normal against the traditional GeoStan
datasets.

Note: GeoStan only matches your input address lists to your auxiliary file if there is
an exact match. Therefore, your input address list should be as clean as
possible; free of misspellings and incomplete addresses.

3. If GeoStan finds an exact record match to the auxiliary file, it standardizes the match to
USPS regulations and returns the output of the auxiliary file match.

Note: You cannot update the auxiliary file while GeoStan is running. If you want to
update the auxiliary file, you need to terminate GeoStan before attempting to
replace the file.

Record type matching rules

When attempting a match against an auxiliary file, GeoStan abides by the following
rules:

• Street record match
– The house number must match the auxiliary record.
– The house number must fall between the low and high house number values of

the auxiliary record.
– The house number must agree with the parity of the auxiliary record.
– The ZIP Code must exactly match the ZIP Code of the auxiliary record.

• Landmark record match
– The ZIP Code and input address line must be present and exactly match the

auxiliary record.
– The input address cannot have any other data, such as a house number, unit

number, or Private Mail Box (PMB).
NOTE: GeoStan only matches the ZIP Code against the auxiliary file. GeoStan does not

verify that the ZIP Code of the input address record is correct for the city and state.
You should validate this information in your input lists before processing against
the auxiliary file.

Unavailable GeoStan features and functions

The following contains the features and functions that do not apply when GeoStan
makes an auxiliary file match.

• GeoStan does not match to

AddressBroker Reference Manual for Windows 483

– two-line addresses
– multi-line addresses
– intersection addresses
– dual addresses

• GeoStan does not match when processing in CASS mode

• GeoStan does not perform EWS, ZIPMove, LACSLink, or DPV processing on
auxiliary matches

• You cannot create an auxiliary file for the reverse geocoding option

Auxiliary match output

Several standard GeoStan outputs do not apply to an auxiliary match since GeoStan
matches to an exact auxiliary match and does not perform any additional validation for
the match. For example, GeoStan does not return the block suffix, the check digit, or
any DPV enum.

GeoStan provides special data type, match codes, and location code values for
auxiliary matches. See the enum chapter for the GeoStan API you are using for more
information.

When GeoStan finds a match to an auxiliary file, the default output is follows the
following conventions:

• GeoStan formats the auxiliary file match as a street-style address for output. This
excludes PO Boxes, Rural Routes, General Delivery, etc.

• GeoStan follows the casing setting you indicate (by default, upper case) by the casing
function. GeoStan does not maintain the casing in the auxiliary file for mixed casing
values. For example, GeoStan returns O’Donnell as ODONNELL or Odonnell
depending on the setting of the casing function.

Note: GeoStan does not change the casing for the User Data field.

• GeoStan removes spaces at the beginning and ending of fields in the auxiliary file.

Note: GeoStan does not remove spaces for the User Data field.

AddressBroker Reference Manual for Windows 484

Auxiliary file layout

The first row of the auxiliary file must be the field names. The field names must maintain
the order as presented in the following table.

Field Description Required

Required
for Street
Segment
Match

Exact match
required if
Present Length Position

ZIP Code 5-digit ZIP Code. X X X 5 1-5

Street name Name of the street or landmark. X X 30 6-35

Street type
abbreviation

Street type. Also called street
suffix.
See the USPS Publication 28,
Appendix C for a complete list
of supported street types.

X X 4 36-39

Pre-directional USPS street name pre-
directional abbreviation.
Supported values are N, E, S,
W, NE, NW, SE, and SW.

X 2 40-41

Post-directional USPS street name post-
directional abbreviations.
Supported values are N, E, S,
W, NE, NW, SE, and SW.

X 2 42-43

RESERVED RESERVED 4 44-47

Low house number Low house number of the
address range.

X X 11 48-58

High house number High house number of the
address range.

X X 11 59-69

House number parity Side of the street of the house
number:
L – Left side of the street
R – Right side of the street
B – Both sides of the street
(default)
U – Unknown side of the street

X X 1 70

Segment direction Direction the house numbers
progress along the segment:
F – Forward (default)
R – Reverse

X X 1 71

RESERVED RESERVED 1 72

FIPS state US government FIPS state
code.

2 73-74

FIPS county US government FIPS county
code.

3 75-77

Census tract US Census tract number. 6 78-83

Census block group US Census block group
number.

1 84

Census block ID US Census block ID number. 3 85-87

RESERVED RESERVED 5 88-92

State abbreviation USPS state abbreviation. 2 93-94

AddressBroker Reference Manual for Windows 485

County name Name of the county. 25 95-119

MCD code Minor Civil Division code. 5 120-124

MCD name Minor Civil Division name. 40 125-164

CBSA code Core Based Statistical Area
code.

5 165-169

CBSA name Core Based Statistical Area
name.

49 170-218

RESERVED RESERVED 5 219-223

City Name City name. Overrides the
city/state preferred city name
upon a return.

40 224-263

RESERVED RESERVED 237 264-500

User-defined data User-defined data. 300 501-800

Record ID Number User-defined unique record
identifier.

10 801-810

Side of street Side of the street for the
address:
L – Left side
R – Right side
B – Both sides
U – Unknown side (default)
This is relative to the segment
endpoints and the segment
direction.

1 811

Beginning longitude Beginning longitude of the
street segment in millionths of
degrees.

11 812-822

Beginning latitude Beginning latitude of the street
segment in millionths of
degrees.

10 823-832

Ending longitude Ending longitude of the street
segment in millionths of
degrees.

11 833-843

Ending latitude Ending latitude of the street
segment in millionths of
degrees.

10 844-853

Field Description Required

Required
for Street
Segment
Match

Exact match
required if
Present Length Position

AddressBroker Reference Manual for Windows 486

Glossary

A
address elements
The components of a street address,
including house number, prefix direction,
street name, street type, and postfix
direction. These elements are parsed by
GeoStan and should not be entered
separately.

address geocoding
See geocode, geocoding.

address standardization
Address standardization is the process of
taking an address and verifying that each
component meets U.S. Postal Service
guidelines for addresses. For example,
when properly abbreviated, “123 Main
Avenue” appears as “123 Main Ave.” During
standardization, minor misspellings,
dropped address elements, and
abbreviations are corrected and the correct
city, state, and ZIP Code are provided.

alias
A recognized alternate for a street name
maintained by association in the database.

alias information
Data returned with certain enums when it
exists. Not returned by all enums even if
specifically requested.

alternate record
Additional or differing information that may
be available about a specific address but
that differs from the base record. See the
enums table for necessary flag settings.

B
base record
The principle, rather than an alternate,
record within the database.

block assignments
(or blockface)
For the assignment of ZIP + 4 codes, one
side of a street, from one intersection to the
next.

C
carrier route
The addresses to which a carrier delivers
mail. In common usage, a carrier route
includes city routes, rural routes, highway
contract routes, post office box sections, and
general delivery units.

CASS
Coding Accuracy Support System. A service
offered to mailers, service bureaus, and
software vendors that improves the
accuracy of delivery point codes, ZIP + 4
codes, 5-digit ZIP Codes, and carrier route
information on mail. CASS provides a
common platform to measure the quality of
address matching software and useful
diagnostics to correct software problems.

CBSA
A statistical geographic entity consisting of
the county or counties associated with at
least one core (urbanized area or urban
cluster) of at least 10,000 population, plus
adjacent counties having a high degree of
social and economic integration with the
core as measured through commuting ties
with the counties containing the core.
Metropolitan and Micropolitan Statistical
Areas are the two categories of Core Based
Statistical Areas.

CBSA Division
A subdivision of CBSA.

Census block ID
The 15-digit identification number used to
specify a particular aggregate or block of
addresses associated through census
processes.

AddressBroker Reference Manual for Windows 487

Census FIPS Code/Census ID
See FIPS code.

centroid
The calculated center of an area. The coordinates that define a centroid are the average of the
sets of coordinates that describe the area.

centroid match
An address that has, through geocoding, been found to match a defined geocentroid.

city state key
A six-character USPS key that uniquely identifies a city name in the city/state file. Each city has a
unique city state key.

CMSA name, CMSA number
Consolidated Metropolitan Statistical Area. The name represents the largest city in a statistical
area. The number represents a 4-digit FIPS code.

County
The primary legal division of every state except Alaska and Louisiana. A number of geographic
entities are not legally designated as a county, but are recognized by the U.S. Census Bureau as
equivalent to a county for data presentation purposes. These include the boroughs, city and
boroughs, municipality, and census areas in Alaska; parishes in Louisiana; and cities that are
independent of any county in Maryland, Missouri, Nevada, and Virginia. They also include the
municipios in Puerto Rico, districts and islands in American Samoa, municipalities in the
Northern Mariana Islands, and islands in the Virgin Islands of the United States. Because they
contain no primary legal divisions, the Census Bureau treats the District of Columbia and Guam
each as equivalent to a county (as well as equivalent to a state) for data presentation purposes.
In American Samoa, a county is a minor civil division.

coordinates
See latitude/longitude coordinates.

CPO
Community Post Office. A contract postal unit that provides service in small communities where
independent post offices have been discontinued. A CPO bears its community’s name and ZIP
Code as part of a recognized address.

CSA
A geographic entity consisting of two or more adjacent Core Based Statistical Areas (CBSAs)
with employment interchange measures of at least 15. Pairs of CBSAs with employment
interchange measures of at least 25 combine automatically. Pairs of CBSAs with employment
interchange measures of at least 15, but less than 25, may combine if local opinion in both areas
favors combination.

D
datum
A mathematical model of the Earth used to calculate the coordinates on any map, chart, or
survey system. Surveyors take an ellipsoid model of the Earth and fix it to a base point. The
North American Datum (NAD) is the official reference ellipsoid used for the primary geodetic
network in North America.

AddressBroker Reference Manual for Windows 488

directionals
A geographic address line component that precedes (predirectional) or follows (postdirectional)
the street name.

DPBC
The Delivery Point Bar Code is a POSTNET barcode that consists of 62 bars with beginning and
ending frame bars and 5 bars each for the 9 digits of the ZIP + 4 code, the last 2 digits of the
primary street address number (or post office box, and so on), and a correction digit. The DPBC
allows automated sorting of mail to the carrier level in walk sequence.

DPC certified
Delivery point code certified. A software or hardware device that meets U.S.P.S. standards for
evaluating a properly standardized ZIP + 4 code address and determines the correct 2-digit DPC
and checkdigit.

E
eLOT
The Enhanced Line of Travel (eLOT) Product was developed to provide mailers the ability to sort
their mailings in approximate carrier-casing sequence. To aid in mail sorting, eLOT contains an
eLOT sequence number field and an ascending/descending code. The eLOT sequence number
indicates the first occurrence of delivery made to the add-on range within the carrier route, and
the ascending/descending code indicates the approximate delivery order within the sequence
number. Mailers can use eLOT processing to qualify for enhanced carrier route presort
discounts.

F
Finance Area
A Finance Area is an area defined by the U.S. Postal Service from which it collects cost and
statistical data. A Finance Area is frequently used for area searches, since it covers some or all
of the ZIP Code areas in a town or city.

finance number
An assigned six-digit number that identifies and installation for processing it’s financial data. The
first two digits are the state code and the next four are uniquely assigned from 0001 through 9999
to each installation in alphabetical order.

FIPS code
Federal Information Processing Standards code. A FIPS Code, also called a Census ID, uniquely
identifies each piece of Census geography. The syntax of the FIPS code is as follows:

ssccctttt.ttgbbb where:
ss = the two-digit State Census FIPS Code
ccc = the three-digit County Census FIPS Code
tttt.tt = the 6-digit Census Tract Census FIPS Code
g = the single-digit Block Group Census FIPS Code
bbb = the Block Census FIPS Code

AddressBroker Reference Manual for Windows 489

G
GDT
Geographic Data Technology data. Produced by TomTom, a premium vendor of street segment
files.

geocode, geocoding
A geocode is the geographic information associated with a unique address or centroid, such as
longitude and latitude. Geocoding is the process of assigning data based upon location
information. GeoStan uses an address or ZIP Code to assign latitude, longitude, and Census
FIPS information.

GIS
Geographic Information System. A computer-based tool for enhancing geographic data by
analyzing both the physical location in space and the set of characteristics associated with a
location.

GSD files
GeoStan directory files.

GsEnums
Enumerated types in the GeoStan API. These enums are prefixed with “GS_” and are defined in
the geostan.h file.

GSL file
USPS eLOT and Z4Change data. This files is used to assign line of travel (LOT) codes to
addresses.

GSU files
GSU files contain information to match addresses based on unique ZIP Code and additional
highrise unit information.

GSX files
Geographic spatial index. These files are used by spatial functions and reverse geocoding in
GeoStan.

GSZ file
GeoStan ZIPMove file contains USPS ZIPMove data.

H
handle
A reference to an object that is required by the Library and is not to be manipulated directly by
the developer. The handle is generated when the library is initialized and is required for many
library functions.

HERE
A premium vendor of street segment and point-level data, formerly known as "NAVTEQ".

AddressBroker Reference Manual for Windows 490

I
intersection matches
Intersections matches are indicated by an x___ match code. For example, 28th Street and
Valmont intersections may be standardized and geocoded and return demographic information.
Intersections do not represent a valid address for mailings.

L
LACS
Locatable Address Conversion System. This system corrects addresses electronically for areas
that have undergone permanent address conversions. The address conversion occurred as a
result of the 911 system implementation and involves renumbering and renaming rural route and
highway contract route information as city-style addresses with street number and name.

lat/lon; latitude/longitude coordinates
Longitude and latitude coordinates are always in degrees, and are always represented as 64-bit
doubles. Positive numbers represent the Eastern and Northern hemispheres, respectively, and
negative numbers represent the Western and Southern hemispheres. For example, the point
140W by 30N would be represented as –140.0,30.0. The library always assumes that the
longitude coordinate is the horizontal direction and the latitude coordinate is the vertical direction.
Support is not provided for user coordinates.

location code
Location codes indicate the accuracy of the assigned geocode.

M
mail stop designator
This designator indicates a routing code used by a company for internal mail delivery.

MASS
Multiline (OCR) Accuracy Support System. A tool similar to Coding Accuracy Support System
(CASS) that accesses and checks the address matching software used by customers’ multiline
optical character readers (OCRs).

match code
Indicates the portions of the address that matched or did not match with the address information
in the GeoStan data files.

match mode
The algorithm used by GeoStan to match an input address to an address in the data files.

match rates
The number of input addresses that correspond (can be matched) to address information in data
files.

MBR
Minimum bounding rectangle. A geographic region defined by and minimum and maximum
latitude and longitude.

AddressBroker Reference Manual for Windows 491

Metropolitan Statistical Area
A Core Based Statistical Area associated with at least one urbanized area that has a population
of at least 50,000. The Metropolitan Statistical Area comprises the central county or counties
containing the core, plus adjacent outlying counties having a high degree of social and economic
integration with the central county as measured through commuting.

Micropolitan Statistical Area
A Core Based Statistical Area associated with at least one urban cluster that has a population of
at least 10,000, but less than 50,000. The Micropolitan Statistical Area comprises the central
county or counties containing the core, plus adjacent outlying counties having a high degree of
social and economic integration with the central county as measured through commuting.

MSA name/number
Metropolitan Statistical Area. The name represents the name of the largest central city and the
number is the 4-digit FIPS code.

match candidate resolution
The process of resolving an address match when more than one street segment has been
identified as corresponding to the input address.

N
NAD
The North American Datum (NAD) is the official reference ellipsoid used for the primary geodetic
network in North America.

NAD27
NAD27 has its origin at Meades Ranch, Kansas. NAD27 does not include the Alaskan islands
and Hawaii. Latitudes and longitudes that are surveyed in the NAD27 system are valid only in
reference to NAD27 and do not tie to any maps outside the U.S.

NAD83
NAD83 is earth-centered and defined with satellite and terrestrial data. NAD83 is compatible with
the World Geodetic System 1984 (WGS84), the terrestrial reference frame associated with the
NAVSTAR Global Positioning System (GPS) now used extensively for navigation and surveying.
Note that TomTom uses WGS84 instead of NAD83. These two coordinate systems are
compatible.

NCSC
National Customer Support Center. The U.S.P.S. CASS support center can be reached at
www.usps.gov/ncsc.

O
object
A basic functional unit of a library. A library contains functions that allow the user to create,
manipulate, and destroy objects. C programmers access objects through handles that are
provided through object creation functions.

AddressBroker Reference Manual for Windows 492

P
postdirectional (postdir)
See directionals.

predirectional (predir)
See directionals.

R
record matching algorithm
Programmed logic that allows evaluation of the results of all field matching algorithms to
determine whether two records match (i.e., are duplicates).

road class code
A key in the street segment file that identifies a road as major or minor according to the Census
Feature Classification Code.

RR
Rural Route. A delivery route served by a rural carrier.

S
soundex algorithm
A type of field matching algorithm that compares two fields based on their pronunciation.

soundex key
Generated by the GsSoundex function. Used to search the database by employing a soundex
algorithm.

spatial query functions
Used to extract data from the GSD files. These functions specify the area to be searched through
a minimum bounding rectangle rather than through city/state/ZIP or finance area.

stage 1 file
A sample address file provided by the U.S.P.S to determine if software/hardware meets postal
requirements for CASS.

stage 2 file
An address file provided by the U.S.P.S. that is used to grade software/hardware to determine if it
meets postal requirements for CASS.

street network files
Files provided by vendors (other than U.S.P.S.) the contain address and geocode information.

T
TomTom
A premium data vendor of street segment files (previously known as TeleAtlas).

TIGER files
Topographically Integrated Geographic Encoding and Referencing. A digital database of
geographic features created by the US Geological Survey (USGS), covering the entire United
States.

AddressBroker Reference Manual for Windows 493

TLID
TIGER/Line® Identification Number.
The TIGER/Line® files use a permanent 10-digit TLID to uniquely identify a complete chain for
the Nation. The 10-digit TLID will not exceed the value 231-1 (2,147,483,647) and represents the
same complete chain in all versions of this file, beginning with the TIGER/Line® Precensus Files,
1990. The minimum value is 100,001. Topological changes to the complete chain causes the
TLIDs to change. For instance, when updates split an existing complete chain, each of the new
parts receives a new TLID; the old TLID is not reused.

As distributed, TIGER/Line® files are grouped by county (or statistically equivalent entity). A
complete chain representing a segment of the boundary between two neighboring counties may
have the same TLID code in both counties or it may have different TLID codes even though the
complete chain represents the exact same feature on the ground.

U
unit designator
Indicates the type of unit (e.g., apartment, unit).

USPS data files
Files provided by the post office containing address and ZIP Code information.

Z
ZIP + 4 directory file
Address records that contain the ZIP + 4 codes for all delivery points, in an electronic form.

ZIP + 4 centroid geocoding
See geocoding.

ZIP Code
Zone Improvement Plan Code. Established in 1963 the five-digit numeric code of which the first
three digits identify the delivery area of a sectional center facility or a major-city post office
serving the delivery address area. The next two (the fourth and fifth) digits identify the delivery
area of an associate post office, post office branch, or post office station. All post offices are
assigned at least one unique 5-digit code. ZIP Code is a USPS trademark.

ZIP + 4 is an enhanced code consisting of the 5-digit ZIP Code and four additional digits that
identify a specific range of delivery addresses. The nine-digit numeric code, established in 1981,
composed of two parts: (a) The initial code: the first five digits that identify the sectional center
facility and delivery area associated with the address, followed by a hyphen; and (b) the four-digit
expanded code: the first two additional digits designate the sector and the last two digits
designate the segment. ZIP + 4 is also a USPS trademark.

Precisely AddressBroker Reference Manual 494

Index

Symbols

.NET
exceptions 188
installing 142

.NET code examples
GetField 157
GetRecord 157
ProcessRecords 156
SetField 154
SetPropery (overloaded) 150
SetRecord 154
ValidateProperties 154

.NET methods
Clear 164
Close 164
GetField (overloaded) 165
GetFieldAttribute 167
GetProperty (overloaded) 169
GetPropertyAttribute (overloaded) 170
GetRecord 173
GetStatusCode 187
LookupRecord 174
ProcessRecords 177
ResetField 178
ResetRecord 181
SetField 182
SetProperty (overloaded) 183
SetRecord 185
syntax 159
ValidateProperties 186

A

abserver
troubleshooting AddressBroker Service Manager

(Windows) 85
UNIX server command 87

ActiveX functions
ClearX 296
GetFieldAttributeX 298
GetFieldX* 296
GetPropertyAttributeX 302
GetPropertyX* 301
GetRecordX 304
GetStatusX 305
InitializeX 306
LookupRecordX 307
ProcessRecordsX 310
ResetFieldX 311
ResetRecordX 312
SetFieldX 313
SetPropertyX* 314
SetRecordX 315
ValidatePropertiesX 316

ActiveX properties 318
ADDR_POINT_INTERP 40

address
match codes 12
match methodology 12
preference 450
records 70

Address Elements 10
address line input mode

address preference 450
multiline 449
overview 447
two-line 447
two-line parsed last line 448

Address location codes 433
Address point interpolation 40
Address ranges 35

Capabilities and guidelines 36
AddressBroker

client 70, 72
functionality 9
installing
server 61, 82

AddressBroker Service Manager
about 82
troubleshooting 85

ALTERNATE_LOOKUP 29
API

C 191–229
C++ 231–282
Java 100–140

attributes 47, 340

B

backward compatibility
library 70, 82
local and client objects 244

Building Name Matching 11

C

C code examples
QABGetRecord 195
QABGetStatus 194
QABInit 192
QABProcessRecords 195
QABSetField 194
QABSetProperty 193
QABSetRecord 194
QABValidateProperties 194

C functions
QABClear 200
QABGetField 201
QABGetFieldAttribute 203
QABGetPropertyAttribute* 207
QABGetPropertyID 205
QABGetPropertyStr 206
QABGetRecord 209

AddressBroker Reference Manual for Windows 495

QABGetStatus 210
QABInit 212
QABLookupRecord 214
QABProcessRecords 217
QABResetField 218
QABResetRecord 219
QABSetField 220
QABSetLogFn 222
QABSetPropertyID 223
QABSetPropertyStr 224
QABSetRecord 225
QABTerm 225
QABValidateProperties 226
syntax 197

C libraries, accessing 191
C tutorial 192
C++ code examples

GetField (overloaded) 236
GetRecord 236
GetStatus 234
ProcessRecords 235
SetField 235
SetProperty (overloaded) 233
SetRecord 235
ValidateProperties 234

C++ functions
Clear 246
debug (overloaded) 277
destructor 244
DisableEventLog 273
DisableTermIO 275
EnableEventLog 274
EnableTermIO 276
error (overloaded) 278
fatal (overloaded) 279
GetField (overloaded) 246
GetFieldAttribute 248
GetLogFilePath 272
GetProperty (overloaded) 250
GetPropertyAttribute (overloaded) 252
GetRecord 254
GetStatus 255
info (overloaded) 278
LookupRecord 256
Message 269
ProcessRecords 260
ResetField 261
ResetRecord 262
SetField 263
SetLogFilePath 272
SetLogProgramName 273
SetProperty (overloaded) 264
SetRecord 266
showStatus (overloaded) 280
syntax 238
UsingEventLog 275
UsingTermIO 276
ValidateProperties 267
warn (overloaded) 279

C++ QMSABLogFile classes
constructor 271
Status 270

C++ QMSABStatus classes
constructor 268
constructors 242

Canadian addresses 46
Centrus AddressBroker See AddressBroker
characters, reserved 71
City Name Matching 11
CityCountyState

Geographic centroid 42
Codes

Address location 433
Street centroid location 437
ZIP+4 centroid location 438

codes
GeoStan Canada location 441
GeoStan location 433

configuration files See .ini files

D

data
accessing remotely 87
geo-demographic 52

Data expiration 461
decimal values 67
delimiters, in property values 63
Demographics Library 46
DPV

Data expiration 461
Implementing 462
Overview 458
overview 24

E

error codes See status codes
error messages See status messages
errors, setting properties to handle

ActiveX 338
C 227
C++ 281

EWS data, Early Warning System data 456, 457
examples

abserver.rc 88
GetField (overloaded) 157, 236
getField (overloaded) 108
GetRecord 157, 236
getRecord 108
GetStatus 234
ProcessRecords 156, 235
processRecords 108
QABGetRecord 195
QABGetStatus 194
QABInit 192

AddressBroker Reference Manual for Windows 496

QABProcessRecords 195
QABSetField 194
QABSetProperty 193
QABSetRecord 194
QABValidateProperties 194
server initialization file 60
SetField 154, 235
setField 107
SetProperty (overloaded) 150, 233
setProperty (overloaded) 105
SetRecord 154, 235
setRecord 107
ValidateProperties 154, 234
validateProperties 107

exceptions, .NET 188
exceptions, Java 139

F

FALLBACK_TO_GEOGRAPHIC 42
False-positive address

Creating report 460
Detail record 460

False-positives
Example code 462
Overview 459

field/data functions
ClearX 296
GetFieldAttributeX 298
GetFieldX* 296
GetRecordX 304
QABClear 200
QABGetField 201
QABGetFieldAttribute 203
QABGetRecord 209
QABResetField 218
QABResetRecord 219
QABSetField 220
QABSetRecord 225
QABValidateProperties 226
ResetFieldX 311
ResetRecordX 312
SetFieldX 313
SetRecordX 315

field/data member functions
Clear 246
GetField 246
GetFieldAttribute 248
GetRecord 254
ResetField 261
ResetRecord 262
SetField 263
SetRecord 266

field/data methods
Clear 164
clear 114
GetField 165
getField 115

GetFieldAttribute 167
getFieldAttribute 118
GetRecord 173
getRecord 123
ResetField 178
resetField 128
ResetRecord 181
resetRecord 131
SetField 182
setField 131
SetRecord 185
setRecord 135

fields
about 66
decimal values in 67
multi-valued 79

Firm Name 28
First hex position 424
FIRST_LETTER_EXPANDED 37
flood zone 48
functions and methods

.NET ABClient class
Clear 164
Close 164
GetField (overloaded) 165
GetFieldAttribute 167
GetProperty (overloaded) 169
GetPropertyAttribute (overloaded) 170
GetRecord 173
LookupRecord 174
ProcessRecords 177
ResetField 178
ResetRecord 181
SetField 182
SetProperty (overloaded) 183
SetRecord 185
ValidateProperties 186

.NET AddressBrokerException class
GetStatusCode 187

.NET AddressBrokerFactory class, Make 162
ActiveX QMSActiveXv1 class

ClearX 296
GetFieldAttributeX 298
GetFieldX* 296
GetPropertyAttributeX 302
GetPropertyX* 301
GetRecordX 304
GetStatusX 305
InitializeX 306
LookupRecordX 307
ProcessRecordsX 310
ResetFieldX 311
ResetRecordX 312
SetFieldX 313
SetPropertyX* 314
SetRecordX 315
ValidatePropertiesX 316

C
QABClear 200

AddressBroker Reference Manual for Windows 497

QABGetField 201
QABGetFieldAttribute 203
QABGetPropertyAttribute* 207
QABGetPropertyID 205
QABGetPropertyStr 206
QABGetRecord 209
QABGetStatus 210
QABInit 212
QABLookupRecord 214
QABProcessRecords 217
QABResetField 218
QABResetRecord 219
QABSetField 220
QABSetLogFn 222
QABSetPropertyID 223
QABSetPropertyStr 224
QABSetRecord 225
QABTerm 225
QABValidateProperties 226

C++ QMSABLogFile class
constructor (overloaded) 271
debug (overloaded) 277
DisableEventLog 273
DisableTermIO 275
EnableEventLog 274
EnableTermIO 276
error (overloaded) 278
GetLogFilePath 272
SetLogFilePath 272
SetLogProgramName 273
showStatus 280
UsingEventLog 275
UsingTermIO 276
warn (overloaded) 279

C++ QMSABStatus class
constructor 268
Message 269
Status 270

C++ QMSAddressBroker class
Clear 246
createClient 242
destroy 244
destructor 244
GetField (overloaded) 246
GetFieldAttribute 248
GetProperty (overloaded) 250
GetPropertyAttribute (overloaded) 252
GetRecord 254
GetStatus 255
LookupRecord 256
ProcessRecords 260
ResetField 261
ResetRecord 262
SetField 263
SetProperty (overloaded) 264
SetRecord 266
ValidateProperties 267

Java AddressBrokerException class
getStatusCode 138

Java QMSAddressBroker class
clear 114
close 114
getField (overloaded) 115
getFieldAttribute 118
getProperty (overloaded) 120
getPropertyAttribute (overloaded) 121
getRecord 123
lookupRecord 124
processRecords 127
resetField 128
resetRecord 131
setField 131
setProperty (overloaded) 133
setRecord 135
setSocketReadTimeout 136
validateProperties 137

Java QMSAddressBrokerFactory class, make 112

G

GDL 47
comparison operations 48
geo-variance buffer 47

geocodes 26
geo-demographic data 48
geo-demographic data types

demographics 49
geocoding 49
Geographic Determination 49
RDI 49
Spatial 49

Geogaphic Determination Library 47
Geographic centroid 42
Geographic Determination Library

comparison operations 48
geo-variance buffer 47

Geographic Determination Library See GDL
geographic variance 47
GeoStan 10
GeoStan Canada 46
geo-variance buffer 47
GSA file 340
GSB file 340

H

https
//support.precisely.com/ 468

Hyphenated 12
Hyphenated Address Support 12

I

import utility 340
ini files

guidelines 59

AddressBroker Reference Manual for Windows 498

initializing server 61
path properties 65
properties 62
properties in server applications 63
sample 60

initialization and member functions, createClient 242
initialization files See ini files
initialization functions

InitializeX 306
QABInit 212

input fields
about 66
decimal values 67

input mode, addressline
multiline 449
two-line 447
two-line parsed last line 448

installation
.NET 142
client 70
Java 100
server 82

J

Java
exceptions 139
installing 100

Java code examples
getField 108
getRecord 108
processRecords 108
setField 107
setPropery (overloaded) 105
setRecord 107
validateProperties 107

Java methods
clear 114
close 114
getField (overloaded) 115
getFieldAttribute 118
getProperty (overloaded) 120
getPropertyAttribute (overloaded) 121
getRecord 123
getStatusCode 138
lookupRecord 124
processRecords 127
resetField 128
resetRecord 131
setField 131
setProperty (overloaded) 133
setRecord 135
syntax 109
validateProperties 137

L

LACSLink

Data expiration 461
Implementing 462
Overview 459
overview 25

line of travel codes 454
Location codes

Address 433
Street centroid 437
ZIP+4 centroid 438

logical names
about 62
fully specifying fields with 67
INIT_LIST property 66

logs
request 228, 386
status 227, 389

LOT codes 454

M

Master Location Data 15
Additional features 15
Optional geocoding feature 18

Expanded Centroids 18
Optional matching features 17

Point of Interest matching 18
PreciselyID ZIP Centroid Locations 17

Optional pbKey features 20
Reverse PBKey Lookup 21

Optional PreciselyID features
PreciselyID Fallback 20

PreciselyID 16
Use Cases 16

match location See geocodes
Match mode 12

CASS 12
Close 12
Custom 13
Exact 12
Interactive 12, 13
Relax 12

Matching
Address ranges 35
Building 28
Firm name 28
Geographic centroid

CityCountyState 42
memory management 53
Missing and wrong first letter 37
multi-threading 53
MUST_MATCH_ADDRNUM 39
MustMatchAddressNumber

Relaxed address number 39

AddressBroker Reference Manual for Windows 499

O

output fields
about 66
decimal values 67
Demographic, Census 2000 420

output fields See fields, output

P

Password, finding 468
path properties

DEMOGRAPHIC_PATHS 367
GDL_SPATIAL_PATHS 369
GEOSTAN_CANADA_PATHS 370
GEOSTAN_PATHS 371
GEOSTAN_Z9_PATHS 371
logical names 65
setting 65
SPATIAL_PATHS 388

PBKEY field 16
PreciselyID 15, 20
PreciselyID ZIP Centroid Locations 16
Predictive lastline 33
processing functions

LookupRecordX 307
ProcessRecordX 310
QABLookupRecord 214
QABProcessRecords 217

processing member functions
LookupRecord 256
ProcessRecords 260

processing methods
LookupRecord 174
lookupRecord 124
ProcessRecords 177
processRecords 127

processing records 71
ProcessRecordsLookupRecord 71
properties, AddressBroker

about 62
ADDRESS_PREFERENCE 450
ALL_INPUT_FIELDS 361
ALL_OUTPUT_FIELDS 363
BUFFER_RADIUS 363
BUFFER_RADIUS_TABLE 364
DEMOGRAPHIC_PATHS 368
DPV_DATA_PATH 368
DPV_SECURITY_KEY 369
GEOSTAN_PATHS 369, 370, 371
GEOSTAN_Z9_PATHS 371
GS_MEMORY_LIMIT 373
INIT_LIST 374
INPUT_FIELD_LIST 375
INPUT_MODE 375, 447
IP_FILTER 376
LACS_DATA_PATH 378

LACS_SECURITY_KEY 378
LOG_ROLLOVER 379
LOGICAL_NAMES 380
MAX_OPEN_GSBS 381
MISC_COUNTS 382
OUTPUT_FIELD_LIST 384
path 65
RDI_DATAPATH 385
REQUEST_LOG 368, 369, 386
REQUEST_LOG_OPTIONS 387
server applications 63
server, optional 64
server, required 64
setting 63
SPATIAL_PATHS 388
STATUS_LOG 389

properties, path See path properties
property functions

GetPropertyAttributeX 302
GetPropertyX* 301
QABGetPropertyAttribute* 207
QABGetPropertyID 205
QABGetPropertyStr 206
QABSetPropertyID 223
QABSetPropertyStr 224
SetPropertyX* 314
ValidatePropertiesX 316

property member functions
GetProperty 250
GetPropertyAttribute 252
SetProperty 264
ValidateProperties 267

property methods
GetProperty 169
getProperty 120
GetPropertyAttribute 170
getPropertyAttribute 121
SetProperty 183
setProperty 133
setSocketReadTimeout 136
ValidateProperties 186
validateProperties 137

R

RDIRDI

Overview 461
Relaxed address number, MustMatchAddressNumber
39
reporting functions

GetStatusX 305
QABGetStatus 210
QABSetLogFn 222

reporting member functions, GetStatus 255
reserved characters 71
Reverse APN Option 26
Reverse PreciselyID Lookup 16

AddressBroker Reference Manual for Windows 500

S

Second hex position 424
server administration

multiple 90
UNIX 86
Windows 82

servers
initializing 61
multiple 73, 90

Spatial+ 46
status code methods, GetStatusCode 187
status code methods, getStatusCode 138
Street centroid location codes 437
SuiteLink

Understanding 25
Support Web site 468

T

termination functions
QABTerm 225

termination member functions, destroy 244
termination methods, Close 164
termination methods, close 114
Third hex position 424
threads and multi-threading 53
troubleshooting

UNIX 89
Windows 85

U

UNIX
process management 89
server administration 86
troubleshooting 89
using abserver on 87

User Dictionary
Understanding 45

User ID, finding 468
USPS

line of travel codes 454

W

Web site, support 468
Windows

server administration 82

1700 District Ave Ste 300
Burlington MA 01803-5231

precisely.com

© 1994, 2021 Precisely. All rights reserved.

	1 – Before You Begin
	Purpose of this guide
	If you need more help
	The Website

	To obtain additional user guides

	2 – Introduction to AddressBroker
	About AddressBroker
	AddressBroker functionality
	GeoStan functionality
	Valid addresses
	Address elements
	Building name matching
	City name matching
	Centerline matching
	Hyphenated address support
	Address match methodology
	Using Interactive match mode
	Point-Level option

	Using Master Location Data
	DPV option
	LACSLink option
	Understanding SuiteLink
	Reverse geocoding option
	Reverse APN option
	Match location (geocodes)
	Street locator geocoding
	Using building name, firm and Point of Interest matching
	Using correct last line
	City-only lastline matching
	Using predictive lastline
	Preferring a ZIP Code over a city
	Matching address ranges
	Understanding missing and wrong first letter
	Permitting relaxed address number matching
	Understanding address point interpolation
	Matching to a geographic centroid
	Understanding Extended Match Codes
	Understanding User Dictionaries
	GeoStan Canada

	Demographics Library functionality
	Spatial+ functionality
	Spatial attributes

	Geographic Determination Library functionality
	Geo-variance buffer generation
	Comparison operations

	Geo-demographic data
	Types of data
	Updating data
	GSB and GSA file dependencies
	Configuring your system for hot data swap
	Logging
	Example code

	AddressBroker components
	Client/Server model
	Application programming model
	Memory management
	Threads and multi-threading
	Programming interfaces

	3 – System Requirements
	Platform support
	Windows DLL files and UNIX libraries
	Operating system support for AddressBroker APIs

	4 – Using Initialization Files
	Guidelines for creating initialization files
	Sample .ini file
	Initializing AddressBroker servers using .ini files
	Typical AddressBroker property settings in a server .ini file

	Logical names
	AddressBroker properties
	Guidelines for setting AddressBroker properties
	AddressBroker properties in server applications
	Setting AddressBroker path properties
	Setting logical names and the INIT_LIST property

	INPUT_FIELD LIST and OUTPUT_FIELD_LIST
	Defining the INPUT_FIELD_LIST
	Defining the OUTPUT_FIELD_LIST
	Decimals in input/output field values

	5 – Client Applications
	Installing AddressBroker
	Backward compatibility
	Multi-threading support requirements
	Input/Output address records
	Managing records
	Processing records
	Reserved characters
	Optimizing performance

	Initializing a client application
	Initializing with an initialization file
	Initializing programmatically
	Configuring clients for use with multiple servers

	AddressBroker properties—client applications
	Managing AddressBroker properties
	Assigning values to process control properties
	Verifying properties
	Getting information about properties
	Error handling properties
	Required AddressBroker initialization properties
	Field list properties
	Other recommended properties

	Logical names—client applications
	Logical names and the LOGICAL_NAMES property
	Logical names and the INIT_LIST property

	Input/Output fields
	Single and multi-valued fields
	Managing fields
	Guidelines for using fields

	6 – Server
	Installing AddressBroker
	Backward compatibility
	Windows server administration
	AddressBroker Service Manager
	Troubleshooting AddressBroker server

	UNIX server administration
	The abserver command
	Accessing remote data on UNIX platforms
	Starting the abserver at boot time
	System resources and AddressBroker UNIX servers
	Troubleshooting the AddressBroker server

	Using multiple servers

	7 – Batch Application
	Formatting your input files
	Creating the configuration file
	Configuration parameters
	Output fields

	Starting the batch application

	8 – Java API
	Restrictions in the Java API
	Accessing the AddressBroker Java library
	Adding a .jar file to your (Windows) CLASSPATH

	AddressBroker Java tutorial
	Step 1: Create and initialize the client object
	Step 2: Set properties
	Step 3: Validate properties (optional)
	Step 4: Enter input records and field values
	Step 5: Process records
	Step 6: Retrieve address records and field values

	AddressBroker Java methods
	Quick reference
	QMSAddressBrokerFactory class
	make
	QMSAddressBroker class
	clear
	close
	getField (overloaded)
	getFieldAttribute
	getProperty (overloaded)
	getPropertyAttribute (overloaded)
	getRecord
	lookupRecord
	processRecords
	resetField
	resetRecord
	setField
	setProperty (overloaded)
	setRecord
	setSocketReadTimeout
	validateProperties
	AddressBrokerException class
	getStatusCode

	AddressBroker Java exceptions
	AddressBrokerException class
	IllegalArgumentException class
	IOException class

	9 – .NET API
	Accessing the AddressBroker .NET library
	AddressBroker .NET tutorial
	Step 1: Create and initialize the client object
	Step 2: Set properties
	Step 3: Validate properties (optional)
	Step 4: Enter input records and field values
	Step 5: Process records
	Step 6: Retrieve address records and field values
	Step 7: Terminating the program

	AddressBroker .NET methods
	Quick reference
	AddressBrokerFactory class
	Make
	ABClient class
	Clear
	Close
	GetField (overloaded)
	GetFieldAttribute
	GetProperty (overloaded)
	GetPropertyAttribute (overloaded)
	GetRecord
	LookupRecord
	ProcessRecords
	ResetField
	ResetRecord
	SetField
	SetProperty (overloaded)
	SetRecord
	ValidateProperties
	AddressBrokerException class
	GetStatusCode

	AddressBroker .NET exceptions
	AddressBrokerException class
	ArgumentNullException class
	IOException class

	10 – C API
	Accessing the AddressBroker C libraries
	Windows platforms
	UNIX platforms

	AddressBroker C tutorial
	Step 1: Create and initialize the object
	Step 2: Set properties
	Step 3: Validate properties (optional)
	Step 4: Enter input records and field values
	Step 5: Process records
	Step 6: Retrieve address records and field values

	AddressBroker C functions
	Quick reference
	QABClear
	QABGetField
	QABGetFieldAttribute
	QABGetPropertyID
	QABGetPropertyStr
	QABGetPropertyAttribute*
	QABGetRecord
	QABGetStatus
	QABInit
	QABLookupRecord
	QABProcessRecords
	QABResetField
	QABResetRecord
	QABSetField
	QABSetLogFn
	QABSetPropertyID
	QABSetPropertyStr
	QABSetRecord
	QABTerm
	QABValidateProperties

	Errors, messages, and status logs
	Using STATUS_LOG and STATUS_LEVEL
	Using REQUEST_LOG
	Using THROW_LEVEL

	11 – C++ API
	Accessing the AddressBroker C++ libraries
	Windows platforms
	UNIX platforms

	AddressBroker C++ tutorial
	Step 1: Create and initialize the object
	Step 2: Set properties
	Step 3: Validate properties (optional)
	Step 4: Enter input records and field values
	Step 5: Process records
	Step 6: Retrieve address records and field values

	AddressBroker C++ member functions
	QMSAddressBroker classes
	Quick reference
	QMSAddressBroker class
	createClient
	destroy
	Clear
	GetField (overloaded)
	GetFieldAttribute
	GetProperty (overloaded)
	GetPropertyAttribute (overloaded)
	GetRecord
	GetStatus
	LookupRecord
	ProcessRecords
	ResetField
	ResetRecord
	SetField
	SetProperty (overloaded)
	SetRecord
	ValidateProperties
	QMSABStatus class
	constructor (overloaded)
	Message
	Status
	QMSABLogFile class
	constructor (overloaded)
	GetLogFilePath
	SetLogFilePath
	SetLogProgramName
	DisableEventLog
	EnableEventLog
	UsingEventLog
	DisableTermIO
	EnableTermIO
	UsingTermIO
	debug, vdebug
	error, verror
	info, vinfo
	fatal, vfatal
	warn, vwarn
	showStatus

	Errors, messages, and status logs
	Using STATUS_LEVEL and STATUS_LOG
	Using THROW_LEVEL

	12 – ActiveX Interface
	IDEs and enumerated types
	AddressBroker properties vs. ActiveX properties
	Accessing the AddressBroker ActiveX library
	AddressBroker ActiveX tutorial
	Step 1: Create and initialize the object
	Step 2: Set properties
	Step 3: Validate properties (optional)
	Step 4: Enter input records and field values
	Step 5: Process records
	Step 6: Retrieve address records and field values

	AddressBroker ActiveX functions
	Quick reference
	QMSActiveXv1 class
	ClearX
	GetFieldX*
	GetFieldAttributeX
	GetPropertyX*
	GetPropertyAttributeX
	GetRecordX
	GetStatusX
	InitializeX
	LookupRecordX
	ProcessRecordsX
	ResetFieldX
	ResetRecordX
	SetFieldX
	SetPropertyX*
	SetRecordX
	ValidatePropertiesX

	AddressBroker ActiveX properties
	Setting and validating AddressBroker properties
	Setting and validating ActiveX only properties
	Quick reference: properties
	AddressPreference
	AllInputFields
	AllOutputFields
	BufferRadius
	BufferRadiusTable
	CacheSize
	CarrtProcessed
	CentroidPreference
	DataType
	Datum
	DaysRemaining
	DpbcProcessed
	FieldDelimiter
	FileDate
	GeoRecordTotal
	HostList “ActiveX only”
	InitializationFileName “ActiveX only”
	InitList
	InputFieldList
	InputMode
	KeepCounts
	KeepMultimatch
	LogFileName “ActiveX only”
	LogicalNames
	MatchMode
	MaximumLookups
	MaximumPoints
	MaximumPolygons
	MiscCounts
	MixedCase
	OffsetDistance
	OutputFieldList
	Password “Activex Only”
	RecordDelimiter
	Recordsmatched
	RecordsProcessed
	RecordsRemaining
	Timeout
	TransportProtocol “ActiveX only”
	UserName “ActiveX only”
	ValueDelimiter
	Version
	Z4ChangeDate
	Zip4Processed
	Zip4Skipped
	ZipProcessed

	Errors, messages, and status logs

	13 – Properties
	Using Spatial Import
	Additional information

	Initialization properties
	Processing control properties
	Read-only properties
	Pre-defined property values

	14 – Properties descriptions
	Quick reference
	ALL_INPUT_FIELDS (read-only) Property
	ALL_OUTPUT_FIELDS (read-only) Property
	BUFFER_RADIUS Property
	BUFFER_RADIUS_TABLE Property
	CLOSEST_SITE_FILTER Property
	DEMOGRAPHICS_PATHS Property
	DPV_DATA_PATH Property
	DPV_SECURITY_KEY Property
	GDL_SPATIAL_PATHS Property
	GEOSTAN_CANADA_PATHS Property
	GEOSTAN_PATHS Property
	GEOSTAN_Z9_PATHS Property
	GS_MEMORY_LIMIT Property
	INIT_LIST Property
	INPUT_FIELD_LIST Property
	INPUT_MODE Property
	IP_FILTER Property
	LACS_DATA_PATH Property
	LACS_SECURITY_KEY Property
	LOG_ROLLOVER (server-only) Property
	LOGICAL_NAMES (read-only) Property
	MAX_OPEN_GSBS Property
	MISC_COUNTS (read-only) Property
	OUTPUT_FIELD_LIST Property
	REQUEST_LOG Property
	REQUEST_LOG_OPTIONS Property
	SPATIAL_PATHS Property
	STATUS_LOG Property

	15 – Fields
	Tables of input fields
	GeoStan input fields
	GeoStan Canada input fields
	Spatial+ input fields
	GDL input fields
	Demographics input fields

	Tables of output fields
	GeoStan output fields
	GeoStan Canada output fields
	Spatial+ output fields
	Geographic Determination Library (GDL) output fields
	Demographic (Census 2010) output fields

	16 – Match codes
	GeoStan return codes
	Definitions for 1st-3rd hex digit match code values
	Definitions for Extended Match Code (3rd hex digit) values
	Definitions for the Reverse PBKey Lookup “Vhhh” return code values
	Definitions for “Ennn” return code values
	Correct last line match codes

	GeoStan Canada return codes

	17 – Location Codes
	GeoStan location codes
	Address location codes
	Street centroid location codes
	ZIP + 4 centroid location codes
	Geographic centroid location codes
	GeoStan Canada location codes

	18 – Status Codes
	Understanding AddressBroker status codes
	Example status codes

	A – Advanced Concepts
	Address line input modes
	xx no space2
	Two-line input mode
	Two-line parsed last line input mode
	Multiline input mode

	Address preference
	Address preference with two-line input mode
	Address preference with two-line parsed last line input mode
	Address preference with parsed input mode
	Address preference with multiline input mode
	USPS enhanced line-of-travel (eLOT) codes

	B – Early Warning System Data
	C – USPS Link products
	DPV overview
	LACSLink overview
	False positive addresses overview
	Data expiration
	RDI overview
	Implementing LACSLink and DPV
	False positive report example code
	Reporting a false positive address
	Understanding SuiteLink for secondary numbers

	D – User-defined Data Files
	User Dictionary
	Understanding User Dictionary capabilities and requirements
	Source data requirements
	Required input fields
	Optional (recommended) input fields
	User Dictionary file names and formats
	Additional User Dictionary considerations
	Using User Dictionaries with address point interpolation

	Auxiliary files
	Auxiliary file matching overview
	Creating your auxiliary files
	Matching to auxiliary files
	Auxiliary file layout

